|
【纪念当年的帖子(2010)】Add Maths功课讨论区
[复制链接]
|
|
发表于 1-12-2010 11:07 AM
|
显示全部楼层
回复 760# 乙劍真人
排写,读到天翻地覆了,搞颠倒了。。。sorry sorry |
|
|
|
|
|
|
|
发表于 1-12-2010 11:13 AM
|
显示全部楼层
下午几点考? |
|
|
|
|
|
|
|
发表于 1-12-2010 12:38 PM
|
显示全部楼层
下午几点考?
Allmaths 发表于 1-12-2010 11:13 AM
2点 |
|
|
|
|
|
|
|
发表于 1-12-2010 12:44 PM
|
显示全部楼层
回复 763# skydream
好的。。。还有一个小时。。。加油! |
|
|
|
|
|
|
|
发表于 1-12-2010 06:26 PM
|
显示全部楼层
回复 752# Allmaths
没有 不过无所谓了 考完了 谢谢你昨天帮了我那么多
今天 考得还好 错了满多 不过有做完就满意了 呵呵 给我拿个A-我都要偷笑了 呵呵! |
|
|
|
|
|
|
|
发表于 19-12-2010 11:06 PM
|
显示全部楼层
given f(x)=[(4x+3)]^5 ,find [f^'(-1)] |
|
|
|
|
|
|
|
发表于 20-12-2010 02:52 AM
|
显示全部楼层
f(x)=[(4x+3)]^5 ,find [f^'(-1)]
hongji 发表于 19-12-2010 23:06
f(x) = (4x+3)^5
f^'(x) = 5 [(4x+3)^4] (4) <----- differentiate
= 20 (4x+3)^4
f^'(-1) = 20 [4(-1)+3]^4 <----- substitute -1 instead of x
= 20 (-1)^4
= 20 (1)
= 20
应该没错吧~
希望你会明白!^^ |
|
|
|
|
|
|
|
发表于 20-12-2010 01:44 PM
|
显示全部楼层
f(x) = (4x+3)^5
f^'(x) = 5 [(4x+3)^4] (4)
数学神 发表于 20-12-2010 02:52 AM
答案对了
但是可以告诉我。。因为我没学过f'
只是会f^-1
f'x=5(4x+3)^4(4)
(4)这个如何来的啊?我很笨的>< |
|
|
|
|
|
|
|
发表于 20-12-2010 04:34 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 20-12-2010 08:06 PM
|
显示全部楼层
不笨~不笨~天底下没有笨人!
f' 就是differentiation
Form 4 Additional Mathematics Chapter 9 有 ...
数学神 发表于 20-12-2010 04:34 PM
谢谢阿。。真后悔当初没有专心上课
希望现在不会太迟。。 |
|
|
|
|
|
|
|
发表于 20-12-2010 08:23 PM
|
显示全部楼层
谢谢阿。。真后悔当初没有专心上课
希望现在不会太迟。。
hongji 发表于 20-12-2010 20:06
不必客气~
你明年form 5吧?还来得及!加油! |
|
|
|
|
|
|
|
发表于 20-12-2010 08:48 PM
|
显示全部楼层
不必客气~
你明年form 5吧?还来得及!加油!
数学神 发表于 20-12-2010 08:23 PM
不是呢我已经f6了有拿数学
因为f5转校没拿addmath(其中2个科目有不一样压力好大)
所以想在这假期读完
因为basic很重要 |
|
|
|
|
|
|
|
发表于 20-12-2010 10:59 PM
|
显示全部楼层
不是呢我已经f6了有拿数学
因为f5转校没拿addmath(其中2个科目有不一样压力好大)
所以 ...
hongji 发表于 20-12-2010 20:48
OIC !!!
嗯,加油加油! |
|
|
|
|
|
|
|
发表于 7-1-2011 08:28 PM
|
显示全部楼层
回复 superliong
x^2-7x<18
x^2-7x-18<0
(x-9)(x+2)<0
-2<x<9
walrein_lim88 发表于 10-3-2010 03:47 PM
想问下啊~为什么那个2要加-tive的symbol?9又不用放减?
如果我的答案跟你的不同是在+tive & -tive,怎样才能对? |
|
|
|
|
|
|
|
发表于 7-1-2011 08:33 PM
|
显示全部楼层
可不可以问一个问题啊~
FORM4第4课的。。。
Given that (8,-2) is the solution of the
simultaneous equations x + h y = k
and x^2 - h y^2 = 14k, find the values
of h and k... |
|
|
|
|
|
|
|
发表于 7-1-2011 08:58 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 7-1-2011 09:47 PM
|
显示全部楼层
Given that (8,-2) is th solution of the simultaneous equations x + hy = k and x^2 - hy^2 =14k, fing the values of h and k. |
|
|
|
|
|
|
|
发表于 7-1-2011 09:58 PM
|
显示全部楼层
本帖最后由 寂寞乄好了 于 7-1-2011 10:01 PM 编辑
Integrate each of the following:
4x^2-9 / 2x+3 dx (Ans : x^2-3x+c)
(2-√x+3x^2)dx (Ans : 2x - 2/3x^3/2 + x^3 + c)
謝咯
|
|
|
|
|
|
|
|
发表于 8-1-2011 11:51 AM
|
显示全部楼层
Given that (8,-2) is th solution of the simultaneous equations x + hy = k and x^2 - hy^2 =14k, fing ...
leenyiam 发表于 7-1-2011 09:47 PM
(8 , -2) 的意思是(x , y)...也就是x=8 和 y=-2..
x+hy=k
8-2h=k ---eq 1
x^2-hy^2=14k
64-4h=14k
7k+2h=32 ---eq 2
再solve simultaneous 得到答案。。。 |
|
|
|
|
|
|
|
发表于 8-1-2011 12:00 PM
|
显示全部楼层
Integrate each of the following:
4x^2-9 / 2x+3 dx (Ans : x^2-3x+c)
(2-√x+3x^2)dx (Ans : ...
寂寞乄好了 发表于 7-1-2011 09:58 PM
(1)factorize 4x^2-9 得 (2x-3)(2x+3)
∫(4x^2-9)/(2x+3) dx=∫(2x-3)(2x+3)/(2x+3) dx
=∫(2x-3) dx
=x^2-3x+c
(2)∫(2-√x+3x^2)dx=∫[2+3x^2-x^(1/2)]dx
=2x+x^3-[x^(3/2)]/(3/2)
=2x+x^3-(2/3)[x^(3/2)]+c
|
|
|
|
|
|
|
| |
本周最热论坛帖子
|