| 
 |  | 
 
| 1 x (1/1 + 1/2 + 1/3 + 1/4 + ... + 1/10) + 3 x (1/2 + 1/3 + ... + 1/10) + 5 x (1/3 + 1/4 + ... + 1/10) + 7 x (1/4 + ... + 1/10) + 9 x (1/5 + ... + 1/10) + 11 x (1/6 + ... + 1/10) + 13 x (1/7 + ... + 1/10) + 15 x (1/8 + ... + 1/10) + 17 x (1/9 + 1/10) + 19 x 1/10 
 我想请问,为什么以上的可以变成:
 
 1/10 (1 + 3 + 5 + 7 ... + 19) + 1/9 (1 + 3 + 5 ... + 17) + 1/8 (1 + 3 + 5 ... + 15) + 1/7 (1 + 3 + 5 ... + 13) .... 1/2 (1 + 3) + 1
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 23-7-2013 08:29 PM
|
显示全部楼层 
| 你let a=1/10,b=1/9,c=1/8,....j=1/1.那后你把一样的拿出来。那时你自然明白!!! | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 14-11-2013 04:45 PM
|
显示全部楼层 
| 1 x (1/1 + 1/2 + 1/3 + 1/4 + ... + 1/10) + 3 x (1/2 + 1/3 + ... + 1/10) + 5 x (1/3 + 1/4 + ... + 1/10) + 7 x (1/4 + ... + 1/10) + 9 x (1/5 + ... + 1/10) + 11 x (1/6 + ... + 1/10) + 13 x (1/7 + ... + 1/10) + 15 x (1/8 + ... + 1/10) + 17 x (1/9 + 1/10) + 19 x 1/10 =1/10 (1 + 3 + 5 + 7 ... + 19) + 1/9 (1 + 3 + 5 ... + 17) + 1/8 (1 + 3 + 5 ... + 15) + 1/7 (1 + 3 + 5 ... + 13) .... 1/2 (1 + 3) + 1
 =1/10x(1+19)x(10/2)+1/9x(1+17)x(9/2)...+1/2x(1+3)x(2/2)+1
 =10+9+8+7....+2+1
 =55
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 16-11-2013 03:50 PM
|
显示全部楼层 
| 1/10 (1 + 3 + 5 + 7 ... + 19) + 1/9 (1 + 3 + 5 ... + 17) + 1/8 (1 + 3 + 5 ... + 15) + 1/7 (1 + 3 + 5 ... + 13) .... 1/2 (1 + 3) + 1 =sum of 1/n([2*a*n+n*(n-1)]/2) where m=n-1
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 19-11-2013 07:15 AM
|
显示全部楼层 
| weitao 发表于 16-11-2013 03:50 PM  1/10 (1 + 3 + 5 + 7 ... + 19) + 1/9 (1 + 3 + 5 ... + 17) + 1/8 (1 + 3 + 5 ... + 15) + 1/7 (1 + 3 + 5 ...
你的公式哪里有m?
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 19-11-2013 07:44 AM
|
显示全部楼层 
| mathlim 发表于 19-11-2013 07:15 AM  你的公式哪里有m?
不好意思
 1/10 (1 + 3 + 5 + 7 ... + 19) + 1/9 (1 + 3 + 5 ... + 17) + 1/8 (1 + 3 + 5 ... + 15) + 1/7 (1 + 3 + 5 ... + 13) .... 1/2 (1 + 3) + 1
 =sum of 1/n([2*a*n+n*(n-1)]/2) where a=1,1<=n<=10
 
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 19-11-2013 11:56 AM
|
显示全部楼层 
| weitao 发表于 19-11-2013 07:44 AM  不好意思
 1/10 (1 + 3 + 5 + 7 ... + 19) + 1/9 (1 + 3 + 5 ... + 17) + 1/8 (1 + 3 + 5 ... + 15) + 1/ ...
既然 a=1,公式里何必有 a?
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 19-11-2013 12:01 PM
|
显示全部楼层 
| 检查: n = 2
 (1/2)(1+3) = 2
 但是 1/n([2*a*n+n*(n-1)]/2) = 3/2
 
 n = 3
 (1/3)(1+3+5) = 3
 但是 1/n([2*a*n+n*(n-1)]/2) = 2
 
 公式错了!
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 19-11-2013 12:10 PM
|
显示全部楼层 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 19-11-2013 07:58 PM
|
显示全部楼层 
| mathlim 发表于 19-11-2013 11:56 AM  既然 a=1,公式里何必有 a?
只是一个习惯!!
 
 | 
 |  |  |  |
 
|  |  |  
|  |  |  |  | 
            本周最热论坛帖子 |