| 
 |  | 
 
| If @i+3j and 3i+(8+@)j are two parallel vector , find the possible value of @. | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 
 楼主|
发表于 23-2-2005 09:45 PM
|
显示全部楼层 
| ABCD is a quadrilateral. P,Q,R and S are mid-point of AB,BC,CD and DA respectively.Prove that PQRS is a parallelogram? | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 24-2-2005 04:10 PM
|
显示全部楼层 
|  Hust 于 23-2-2005 09:42 PM  说 : If @i+3j and 3i+(8+@)j are two parallel vector , find the possible value of @.
 
 @i+3j=k{3i+(8+@)j}   because they are parallel vector
 @i+3j=3ki+(8k+@k)j
 @=3k 3=8k+@k
 k=@/3
 3=8(@/3)+@(@/3)
 9=8@+@^2
 @^2+8@-9=0
 (@+9)(@-1)=0
 @=-9 or @=1
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 24-2-2005 04:23 PM
|
显示全部楼层 
|  Hust 于 23-2-2005 09:45 PM  说 : ABCD is a quadrilateral. P,Q,R and S are mid-point of AB,BC,CD and DA respectively.Prove that PQRS is a parallelogram?
 
 我不会post diagram 出来,你画了图画才看解答吧!
 let the position vector of A,B,C,D be a,b,c,d
 i.e:OA=a,OB=b,OC=c,OD=d
 S is a mid point of AD
 OP={OA+OD}/2
 =1/2(a+d)
 P is a mid point of AB
 OP=(OA+OB)/2
 =1/2(a+b)
 Q is a mid point of BC
 OQ=(OB+OC)/2
 =1/2(b+c)
 R is a mid point of CD
 OR=(OC+OD)/2
 =1/2(c+d)
 SP=SO+OP
 =-1/2(a+d)+1/2(a+b)
 =1/2(b-d)
 RQ=RO+OQ
 =-1/2(c+d)+1/2(b+c)
 =1/2(b-d)
 vectorSP=vectorRQ
 SP=RQ
 SP parallel RQ
 therefore,SPRQ is a parallelgram
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 
 楼主|
发表于 25-2-2005 09:06 PM
|
显示全部楼层 
| 我有数学的疑惑 Using the vector method , prove that the perpendicular bisectors of the sides of a triangle are convergent.
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 
 楼主|
发表于 25-2-2005 09:13 PM
|
显示全部楼层 
| Prove that the diagonals of a rhombus are perpendicular? | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 26-2-2005 10:35 PM
|
显示全部楼层 
|  Hust 于 25-2-2005 09:13 PM  说 : Prove that the diagonals of a rhombus are perpendicular?
 
 let OABC is a rhombus with dot OA=a,dot OB=b
 from triangle OAB,dot AB=b-a
 from triangle OBC,dotOC=a+b
 hence,dot(AB.OC)=(b-a)(a+b)
 =b.a+b.b-a.a-a.b
 =|b|^2-|a|^2
 =0  because |a|=|b| in a rhombus
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 
 楼主|
发表于 27-2-2005 10:35 AM
|
显示全部楼层 
| Find the probability of throwing three sixes twice in five throws of six dice? | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 27-2-2005 07:39 PM
|
显示全部楼层 
| A,B,c are the vertices of a triangle.The perpendicular line from A to BC and the perpendicular line from B to AC meet at D.Show that CD is perpendicular to AB. | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 28-2-2005 02:11 PM
|
显示全部楼层 
|  Leong13 于 27-2-2005 07:39 PM  说 : A,B,c are the vertices of a triangle.The perpendicular line from A to BC and the perpendicular line from B to AC meet at D.Show that CD is perpendicular to AB.
 
 
 ∠AGD =  ∠DFB = 90
 ∠ADG =∠FDB
 所以 ∠GAD =∠ DBF
 给一个四方形, 内角的合为360度。
 所以∠GAE+ ∠GDE = 180
 ∠GDE= ∠CDB
 所以 ∠GAE=∠GAD +∠DAE
 =∠DCF+∠DBF
 
 ∠GAD =∠ DBF,
 所以 ∠DAE =∠ DCF.
 
 ---> ∠DAE =∠ DCF.∠ADE =∠CDF,
 SO,∠AED =∠ DFC = 90.
 CD is perpendicular to AB
 
 
  
 [ Last edited by fritlizt on 28-2-2005 at 02:13 PM ]
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 1-3-2005 02:20 PM
|
显示全部楼层 
| 数学的疑惑 1.An aircraft that has a speed of 350kmh-in still air is heading south.The velocity of the wind from the north-east direction is 50kmh- .Determine the resultant velocity of thr aircrafy.
 2.A force of 7N and a force P has a resultant force of magnitude 15N.Find P if the angle between the two forces is
 (a)90sudut      (b)60sudut.
 | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 10-3-2005 12:21 PM
|
显示全部楼层 
|  Hust 于 27-2-2005 10:35 AM  说 : Find the probability of throwing three sixes twice in five throws of six dice?
 6個中出現3個6的機率
 
 (A,B,C,D,E,F) 中
 A 代表第一個出現的數字
 B 代表第二個出現的數字
 C 代表第三個出現的數字
 D 代表第四個出現的數字
 E 代表第五個出現的數字
 F 代表第六個出現的數字
 
 3個6可以有以下的組合 :
 3個6和其他三個數字組成
 3個6和其他兩個數字組成
 3個6和其他一個數字組成
 
 (6,6,6,A,B,C)的組合可能 10
 (6,6,6,A,B,C)的排列可能 120
 (6,6,6,A,B,C)共形成1200種三個6和三個不同的數字組合的可能
 解說:
 A,B,C 可以有 10 種組合 (5C3)
 (6,6,6,A,B,C) 可以有 120 種排列 (6P6 / 3P3)
 每個不同的組合,各自有120種排列
 
 (6,6,6,A,A,B)的組合可能 20
 (6,6,6,A,A,B)的排列可能 60
 (6,6,6,A,A,B)共形成1200種三個6和兩個不同的數字組合的可能
 解說:
 A,B 可以有 20 種組合 (5C1) * (4C1)
 先選出一個數字A,再選出另外一個數字B
 (6,6,6,A,A,B) 可以有 60 種排列 (6P6 / 3P3 / 2P2)
 每個不同的組合,各自有60種排列
 
 (6,6,6,A,A,A)的組合可能 5
 (6,6,6,A,A,A)的排列可能 20
 (6,6,6,A,A,A)共形成100種三個6和一個不同的數字組合的可能
 解說:
 A 可以有 5種組合
 (6,6,6,A,A,A) 可以有 20 種排列 (6P6 / 3P3 / 3P3)
 每個不同的組合,各自有20種排列
 
 三個六的可能 = 1200 + 1200 + 100 = 2500種
 
 六個數的可能 = 6 x 6 x 6 x 6 x 6 x 6 = 46656種
 
 六個數字中出現三個六的機率 = 2500 / 46656
 
 用隨機程式演算過,46656次中出現3個6的次數為 2500左右
 所以答案絕對正確
    | 
 |  |  |  |
 
|  |  |  
|  |  |  |  | 
            本周最热论坛帖子 |