|
University-数学讨论区-Calculus, Real Analysis
[复制链接]
|
|

楼主 |
发表于 27-1-2008 12:37 PM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 27-1-2008 03:30 PM
|
显示全部楼层
回复 39# DADDY_MUMMY 的帖子
9)
首先用substitution,Let u = a^2 + x^2
然后∫ u^2 / (u^2 - a^2) dx = .......
然后再用substitution , Let v = a^2 + u^2
然后 ∫ a^2 / (v^2 - a^2) dx = ....
最后所找到的答案in term of v,把他换回in term of u , 再换回in term of x.
∫ [√ (a^2 + x^2)]/x dx = √(a^2 + x^2) - a ln | [a+ √ (a^2 + x^2)]/x | + c |
|
|
|
|
|
|
|
发表于 28-1-2008 12:39 PM
|
显示全部楼层
原帖由 ~HeBe~_@ 于 27-1-2008 03:30 PM 发表 
9)
首先用substitution,Let u = a^2 + x^2
然后∫ u^2 / (u^2 - a^2) dx = .......
然后再用substitution , Let v = a^2 + u^2
然后 ∫ a^2 / (v^2 - a^2) dx = ....
最后所找到的答案in term of v ...
1)Prove ∫ (sec x) ^n dx = [tan x (sec x) ^ (n -2)]/ (n – 1) +
[(n – 2)/ (n – 1)] *∫ (sec x) ^ (n -2) dx
然后,这个ne? |
|
|
|
|
|
|
|
发表于 29-1-2008 11:11 AM
|
显示全部楼层
天啊!好多蜘蛛网啊!  |
|
|
|
|
|
|
|

楼主 |
发表于 29-1-2008 05:31 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 29-1-2008 05:48 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 29-1-2008 10:54 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 1-2-2008 10:30 PM
|
显示全部楼层
原帖由 TCLGT 于 29-1-2008 10:54 PM 发表 
怎样 int(e^x lnx) dx
int(e^x lnx)dx = e^x ln x - int(e^x / x) dx
e^x = 1 + x + x^2/2 + x^3/3! + .... (用 e^x 的 power series)
e^x/x = 1/x + sum_(k=1 to infity) (x^(k-1)/k!)
int(e^x/x) = ln x + sum_(k=1 to infity) (x^k/(k.k!))
int(e^x lnx)dx = e^x ln x + ln x + sum_(k=1 to infity) (x^k/(k.k!))
[ 本帖最后由 dunwan2tellu 于 1-2-2008 10:40 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 1-2-2008 10:38 PM
|
显示全部楼层
原帖由 DADDY_MUMMY 于 28-1-2008 12:39 PM 发表 
1)Prove ∫ (sec x) ^n dx = [tan x (sec x) ^ (n -2)]/ (n – 1) +
[(n – 2)/ (n – 1)] *∫ (sec x) ^ (n -2) dx
然后,这个ne?
(sec x)^n = (sec x)^(n-2) * (sec x)^2= (sec x)^(n-2) * (tan^2 x + 1)
= tan^2 x * (sec x)^(n-2) + (sec x)^(n-2)
int ( tan^2 x *(sec x)^(n-2))dx = int ( tan x * (tan x * sec x) * (sec x)^(n-3) ) dx
= tan x * 1/(n-2) * (sec x)^(n-2) - int ( (sec x)^2 * 1/(n-2) * (sec x)^(n-2)) dx
(用 integration by parts on (tan x * sec x) * (sec x)^(n-3) 和 tan x)
之后就 simplify |
|
|
|
|
|
|
|
发表于 15-2-2008 09:02 PM
|
显示全部楼层
Let P be an interior point of an equilateral triangle ABC such that (AP^2)=(BP^2)+(CP^2). Prove that angle BPC = 150 degrees. |
|
|
|
|
|
|
|
发表于 17-2-2008 01:49 PM
|
显示全部楼层
原帖由 DADDY_MUMMY 于 15-2-2008 09:02 PM 发表 
Let P be an interior point of an equilateral triangle ABC such that (AP^2)=(BP^2)+(CP^2). Prove that angle BPC = 150 degrees.
Let A(1,sqrt[3]) , B(0,0) , C(2,0) ,P(x,y) .
=> (x-1)^2 + (y-sqrt[3])^2 = x^2 + y^2 + (x-2)^2 + y^2
=> x^2 - 2x + y^2 + 2sqrt[3] y = 0
=> (x-1)^2 + (y+sqrt[3])^2 = 4
P = 圆形轨迹,圆心 (1,-sqrt[3]) ,半径 = 2 ,在 ABC 里面。
设 Q(1,-sqrt[3]) , 那么 QBC = 等边三角形 = ABC , 所以 minor <BQC = <BAC = 60
=> major <BQC = 300
=> <BPC = 1/2 * major < BQC = 150 (angle at center is double the angle at circumference)
p/s : Calculus 题目?? |
|
|
|
|
|
|
|
发表于 19-2-2008 10:25 PM
|
显示全部楼层
sequences#
write down an expression, in terms of n, for the n^th term of each of of these sequences.
1) 1,2,1,2,1,2,1,2,......1,2,1,2....
2) 1,2,3,1,2,3,1,2,3......1,2,3,1,2,3..... |
|
|
|
|
|
|
|
发表于 21-2-2008 03:17 AM
|
显示全部楼层
原帖由 ENSEN_1212 于 19-2-2008 10:25 PM 发表 
write down an expression, in terms of n, for the n^th term of each of of these sequences.
1) 1,2,1,2,1,2,1,2,......1,2,1,2....
2) 1,2,3,1,2,3,1,2,3......1,2,3,1,2,3.....
1) 1 + (1 + (-1)^n)/2
2) 1+ [1 + (-1)^(n mod 3)]/2 + 0^(n mod 3) , 0 <= n mod 3 <= 2 |
|
|
|
|
|
|
|
发表于 12-3-2008 06:28 PM
|
显示全部楼层
试一试这题 ^^
不会很难,不过看起来满特别:
 |
|
|
|
|
|
|
|
发表于 12-3-2008 07:06 PM
|
显示全部楼层
原帖由 ENSEN_1212 于 19-2-2008 10:25 PM 发表 
write down an expression, in terms of n, for the n^th term of each of of these sequences.
1) 1,2,1,2,1,2,1,2,......1,2,1,2....
也可以这样表示:
1. an =

2. an = 1 + 3[k/3] , [x] 是小于 x 的最大整数.
[ 本帖最后由 多普勒效应 于 12-3-2008 07:11 PM 编辑 ] |
|
|
|
|
|
|
|

楼主 |
发表于 12-3-2008 07:22 PM
|
显示全部楼层
回复 54# 多普勒效应 的帖子
To prove lim n->inf X_n = x/2
Proof:
lim n->inf X_n = lim n->inf ([x]+[2X]+...+[nx])/n^2
= lim n->inf ( (n/2) ([X] +[nX]) )/ n^2 <= sum to n
= lim n->inf (1/2n) ([X] +[nX]) <= use L'Hospital Rules
= lim n->inf (1 + X)/2 to get this
= 1/2 +X/2
为什么我得不到X/2 ???
 |
|
|
|
|
|
|
|
发表于 12-3-2008 10:21 PM
|
显示全部楼层
原帖由 ~HeBe~_@ 于 12-3-2008 07:22 PM 发表 
To prove lim n->inf X_n = x/2
Proof:
To prove lim n->inf X_n = x/2
Proof:
lim n->inf X_n = lim n->inf ([x]+[2X]+...+[nx])/n^2
= lim n->inf ( (n/2) ([X] +[nX]) )/ n^2 <= sum to n
= lim n->inf (1/2n) ([X] +[nX]) <= use L'Hospital Rules
= lim n->inf (1 + X)/2 to get this
= 1/2 +X/2 ...
应该是
lim n->inf (1/n + X)/2
所以 X/2
|
|
|
|
|
|
|
|

楼主 |
发表于 13-3-2008 12:33 AM
|
显示全部楼层
Proof:
lim n->inf X_n = lim n->inf ([x]+[2X]+...+[nx])/n^2
= lim n->inf ( (n/2) ([X] +[nX]) )/ n^2 <= sum to n
= lim n->inf (1/2n) ([X] +[nX])
= lim n->inf (1/2n) [X] + (1/2n) [nX] <= use L'Hospital Rules
= lim n->inf [x] /2 <= to get this
= X/2
我想应该对了吧~ |
|
|
|
|
|
|
|
发表于 13-3-2008 01:57 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 14-3-2008 06:58 PM
|
显示全部楼层
原帖由 ~HeBe~_@ 于 13-3-2008 12:33 AM 发表 
Proof:
lim n->inf X_n = lim n->inf ([x]+[2X]+...+[nx])/n^2
= lim n->inf ( (n/2) ([X] +[nX]) )/ n^2 inf (1/2n) ([X] +[nX])
...
[x]+[2x]+...+[nx] = (n/2)([x] + [nx]) 这个关系好像不对 
反例: n = 3, x = 1.5
[x]+[2x]+[3x] = [1.5] + [3] + [4.5] = 8
但 n([x] +[3x])/2 = 3 (1 + 4)/2 = 7.5!
emm, { [x], [2x], ... [nx] } 未必是等差数列!
[ 本帖最后由 多普勒效应 于 14-3-2008 07:03 PM 编辑 ] |
|
|
|
|
|
|
| |
本周最热论坛帖子
|