|
发表于 17-11-2007 12:29 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 17-11-2007 03:19 PM
|
显示全部楼层
原帖由 ~HeBe~_@ 于 17-11-2007 12:29 PM 发表 
-3x^2 / (x^3 + 1)^2
对不起。应该是怎样kamir才是。写错了。 |
|
|
|
|
|
|
|
发表于 17-11-2007 04:58 PM
|
显示全部楼层
答案是这个吗?1/(1+x^3)拆成(1/3)/(x+1)-(1/3)(x-2)/(x^2-x+1),然后分两个部份来做,我拿到(1/3)ln(x+1)-(1/6)ln(x^2-x+1)-(1/√3)[(tan-1)(2x-1)/(√3)].tan-1是anti tan.不大肯定 ,请大家指教。
[ 本帖最后由 ~Lucifer~ 于 17-11-2007 04:59 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 18-11-2007 01:01 PM
|
显示全部楼层
请问你们可以也把算草写出来吗?对不起,现在我还没有答案。 |
|
|
|
|
|
|
|
发表于 18-11-2007 01:09 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 18-11-2007 03:09 PM
|
显示全部楼层
原帖由 dunwan2tellu 于 18-11-2007 01:09 PM 发表 
Lucifer 的答案应该是 + (1/sqrt[3])ArcTan[(2x-1)/sqrt[3]] 
partial fraction
1/(x^3+1) = 1/3 * ( 1/(x+1) - (x-2)/(x^2-x+1))
= 1/3 * (1/(x+1) - 1/2 * (2x-4)/(x^2 - x + 1) ) ...
谢谢。明白了。 |
|
|
|
|
|
|
|
发表于 18-11-2007 06:20 PM
|
显示全部楼层
請幫忙solve
show that the centres of the circles passing through the points (3,2) and ( 6,3) are located on the line 3x + y = 16. two of these circles touch the line x+2y=2. find the equations of both these circles. determine the point on the line x +2y=2. |
|
|
|
|
|
|
|
发表于 18-11-2007 06:50 PM
|
显示全部楼层
還有一題
given three points A (3,3), B(-1,5), C(6,0) and a straight line L with equation y= mx-8m-6.If L intersects triangle ABC, find the range of m. |
|
|
|
|
|
|
|
发表于 19-11-2007 04:31 PM
|
显示全部楼层
L intersects triangle ABC的意思是?我了解能力不大好... |
|
|
|
|
|
|
|
发表于 19-11-2007 05:29 PM
|
显示全部楼层
原帖由 Leong13 于 18-11-2007 06:50 PM 发表 
還有一題
given three points A (3,3), B(-1,5), C(6,0) and a straight line L with equation y= mx-8m-6.If L intersects triangle ABC, find the range of m.
如果 M(AB) 表示 gradient of AB , 那么
M(AB) = -1/2
M(AC) = -1
M(BC) = -5/7
y = m(x-8) - 6 经过一个 fix point , (8,-6)
设 这个点是 P = (8,-6) ,那么
M(AP) = -9/5
M(BP) = -11/9
M(CP) = -3
做图不难发现要他们 intersect 的话,就必须有
M(CP) =< m =< M(BP)
-3 =< m =< -11/9
請幫忙solve
show that the centres of the circles passing through the points (3,2) and ( 6,3) are located on the line 3x + y = 16. two of these circles touch the line x+2y=2. find the equations of both these circles. determine the point on the line x +2y=2.
如果你还记得如何利用圆形 circumference 上的 2 个点来找出他的 center 的话,你就知道如何证明 3x+y=16 (提示:perpendicular bisector line of the two point)
要找 equation 的话,设 center = (a,b)
3a + b = 16 .....(i) center pass tru 3x+y=16
(3-a)^2 + (2-b)^2 = (a+2b-2)^2/5 ....(ii) radius from center to (3,2) = radius from center to tangent line
solve (i),(ii) 就可以得到两个 (a,b)
[ 本帖最后由 dunwan2tellu 于 19-11-2007 05:54 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 19-11-2007 10:31 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 19-11-2007 10:34 PM
|
显示全部楼层
我還有問題
1. Find the ratio of the term in a^r to the term in a^r+1 in the expansion of (a+b)^n.
2.(1-3x^2)^-n, modulus x <1/2, find the sixth term |
|
|
|
|
|
|
|
发表于 19-11-2007 11:06 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 26-12-2007 04:52 PM
|
显示全部楼层
有个关于probability的问题要请教:
A lady attends interviews at 3 companies X, Y and Z. Based on her own judgement, she believes that the probability that she will be offered a post at the companies are 2/5 at X, 3/10 at Y and 1/10 at Z. What is the probability that the lady gets a job at any one of the 3 companies?
答案是57/125。请问怎样获得这个答案呢? |
|
|
|
|
|
|
|
发表于 26-12-2007 08:44 PM
|
显示全部楼层
回复 494# 的帖子
P(gets 1 job) = P(拿到X,拿不到Y和Z) + P(拿到Y,拿不到X和Z) + P(拿到Z,拿不到X和Y) |
|
|
|
|
|
|
|
发表于 28-12-2007 01:51 PM
|
显示全部楼层
回复 495# 的帖子
哦,谢谢。之前原来我按错计算机了。 |
|
|
|
|
|
|
|
发表于 1-2-2008 09:20 PM
|
显示全部楼层

请问怎样做到答案等于5049/20200?
[ 本帖最后由 zfc 于 1-2-2008 10:46 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 1-2-2008 10:19 PM
|
显示全部楼层
1/k(k+1)(k+2)
=1/(k+!)*1/k*1/(k+2)
=1/2*1/(k+1)(1/k-1/(k+2))
=1/2(1/k(k+1))-1/(k+1)(k+2))
E for summation
E1/2(1/k(k+1))-1/(k+1)(k+2))
=1/2(1/2-1/6+1/6-...............-1/10100)
=1/2(1/2-1/10100)
=5049/20200 |
|
|
|
|
|
|
|
发表于 1-2-2008 10:21 PM
|
显示全部楼层
或考虑
1/2 * (1/k - 1/(k+1)) - 1/2 * (1/(k+1) - 1/(k+2))
两个 summation |
|
|
|
|
|
|
|
发表于 3-2-2008 10:29 AM
|
显示全部楼层
谢谢两位高手! |
|
|
|
|
|
|
| |
本周最热论坛帖子
|