|
发表于 9-8-2007 10:37 PM
|
显示全部楼层
回复 #318 Leong13 的帖子
你可以举个例子来用substitute的方法给我看吗?
其实很多的解法。。看个人学了哪个及喜欢用哪个方法。。。 |
|
|
|
|
|
|
|
发表于 10-8-2007 03:04 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 14-8-2007 05:56 PM
|
显示全部楼层
原帖由 Leong13 于 1-8-2007 06:49 PM 发表 我會第3而已,
P ( A/B ) = 0.7
P ( A n B ) / P ( B ) = 0.7
given P ( B ) = 0.4
so, P ( A n B ) = 0.28
P ( A / B' ) = 0.2
P ( A n B' ) / P ( B') = 0.2
P ( B' ) = 1- P ( B ) = 0.6
P ( A n B' ) = P ( A ) - P ( A n B )
P ( A ) - P ( A n B ) = 0.2x0.6
P ( A ) = 0.12 + 0.28 = 0.4
P ( B / A ) = P ( B n A )/ P ( A )
= 0.28 / 0.4 = 0.7
我不大明白青色bold了那部分。请问这个是怎样的来的?好像没有任何formula呢...
对了,我想知道这个chapter有多少个formula
我打我在书上找到的,不知道其它书的formula会不会比较完整。
1.mutually exclusice
P(A n B) = 0
P(A u B) = P(A) + P(B)
2.not mutually exclusive
P(A u B) = P(A) + P(B) - P(A n B)
3.conditional probability
P(A | B) = P(A n B) / P(B)
P(B | A) = P(A n B) / P(B)
4 independent events
P(A n B) = P(A) * P(B)
P(A | B) = P(A)
P(B | A) = P(B)
P(E') = 1 - P(E)
P(A) = P(A n B) + P(A n B')
P(B|A) = P(A|B)P(B) / P(A|B)P(B)+P(A|B')P(B') |
|
|
|
|
|
|
|
发表于 14-8-2007 05:59 PM
|
显示全部楼层
原帖由 jinqwem 于 7-8-2007 08:59 PM 发表 回复 #295 cold_spoon 的帖子
第一题,
先假设有两个人,
那么,
最少两个人有相同生日的机率是
1- P(两个人不同生日)
=1-( 364/365)
三个人.
P(最少两个人有相同生日的机率)=1-(364/365 * 363/365)
四个人,
P(最少两个人有相同生日的机率)=1-(364/365 * 363/365 * 362/365)
发现在里面分子递减, 分母相同.
故FOR N 人,
P(最少两个人有相同生日的机率)
=1- ( 365*364*363*....*(365-N+1)/ 365^N)
=1- [365!/(365-N)!]/365^N
PART 2 可以用之前证明的FORMULA 做...
注:当有两个人时, FOR P(两个人不同生日), 一个人有一个生日后第二个人的生日和第一人不同的机率为 364/365
不好意思,这题我整题都不是十分明白。。。麻烦你可以再解释多一次吗? |
|
|
|
|
|
|
|
发表于 14-8-2007 06:05 PM
|
显示全部楼层
原帖由 jinqwem 于 7-8-2007 09:16 PM 发表 
回复 #295 cold_spoon 的帖子
第二题,
a) 注意到 P( A U B ) = P(A) + P(B) - P ( A n B)
故.P( A U B )/[P(A) + P(B)]
= [P(A) + P(B) - P ( A n B)]/[P(A) + P(B)]
= 1- P ( A n B)/[P(A) + P(B)]
= 1- y
b) P ( A n B| A U B) = P(A n B)/ P( A u B)
= y[P(A) + P(B)]/{( 1-y)*[P(A) + P(B)]}
= y/(1-y)
c) 由于 P ( A n B| A U B) 必须 小过或等于1.
故y/(1-y) < or = 1
[y-(1-y)]/(1-y) < or = 0
(2y-1)*(1-y) < or = 0
(2y-1)*(y-1) >or= 0
therefore, y<or= 1/2, y >1
可是,P ( A n B) 不可能大过 P(A)+P(B),
又, P ( A U B) 不可能大过 P(A)+P(B)
所以得证.
这题我有以下问题
1.(a) 为什么 P(A) + P(B) = 1 呢?请问这个是不是一定的?
2。(b) 为什么 P(A n B | A u B) = P(A n B)/P(A u B) ?
3。(c) [y-(1-y)]/(1-y) < or = 0
(2y-1)*(1-y) < or = 0
不明白为什么要这样做...
jingwen,我有好多问题,希望你不会嫌我笨。
[ 本帖最后由 cold_spoon 于 14-8-2007 06:08 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 16-8-2007 11:22 AM
|
显示全部楼层
1. [P(A) + P(B) - P ( A n B)]/[P(A) + P(B)]
= [P(A) + P(B)]/[P(A) + P(B)] - P ( A n B)]/[P(A) + P(B)]
= 1 - P ( A n B)]/[P(A) + P(B)]
2. P(A n B | A u B)是指在A u B 的REGION 里, A n B 的比例, 故为P(A n B)/P(A u B),
3. y/(1-y) < or = 1, 这里要用不等式的方式来做,
所以要把1 搬过去, 变成[y-(1-y)]/(1-y) < or = 0
或[2y-1]/(1-y) < or = 0 这时候要ELIMINATE 分母, 所以两边乘肯定是POSITIVE 的(1- y)^2, 得(2y-1)*(1-y) < or = 0 |
|
|
|
|
|
|
|
发表于 17-8-2007 08:58 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 19-8-2007 01:46 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 21-8-2007 10:17 AM
|
显示全部楼层
原帖由 jhwong_alen 于 17-8-2007 08:58 PM 发表 
好乱啊啊。。。。。。
对不起, 没有SCANNER,
慢慢看吧, 应该看得懂的... |
|
|
|
|
|
|
|
发表于 21-8-2007 11:55 AM
|
显示全部楼层
原帖由 jhwong_alen 于 17-8-2007 08:58 PM 发表 
好乱啊啊。。。。。。
我通常抄出来后才慢慢研究,在电脑比较难看。
帮我看看这一题
A lot of 25 items is inspected following a two-stage inspection plan. A sample of 5 items is first drawn. If one or more is defective, the whole lot is rejected; if all are good, a second sample of 10 items is drawn from the remaining 20 items. The lot is rejected if any of the items in the second sample is bad and accepted if all are good. Find the probability of accepting a lot that contains two defective items.
这题不知道它一个item 的defective几率有多少,请问有可能解决到吗? |
|
|
|
|
|
|
|
发表于 21-8-2007 01:30 PM
|
显示全部楼层
原帖由 cold_spoon 于 21-8-2007 11:55 AM 发表 
我通常抄出来后才慢慢研究,在电脑比较难看。
帮我看看这一题
A lot of 25 items is inspected following a two-stage inspection plan. A sample of 5 items is first drawn. If one or more is def ...
应该是 0.15 吧。。。。。。 |
|
|
|
|
|
|
|
发表于 21-8-2007 08:57 PM
|
显示全部楼层
原帖由 flash 于 21-8-2007 01:30 PM 发表 
应该是 0.15 吧。。。。。。
答案真的是0.15。我那天和老师讨论了很久都没有结果,有点惊奇你是怎样得到这个答案的? |
|
|
|
|
|
|
|
发表于 22-8-2007 10:43 AM
|
显示全部楼层
这题不知道它一个item 的defective几率有多少,请问有可能解决到吗?
不需要知道一个ITEM 的DEFECTIVE 机率有多少...
25 个里有2个坏的,
那么在首五个没有坏的机率是23C5/25C5
次十个没有坏的机率是(23C5/25C5)* 18C10/20C10
= 0.15 |
|
|
|
|
|
|
|
发表于 22-8-2007 04:06 PM
|
显示全部楼层
請幫忙solve
1. a box contains 15 white balls and 10 yellow balls, by assuming that selection is made randomly one by one, without replacement find,
the probability that the third ball picked is white.
2. a survey on the interest in reading entertainment magazines and novels among the students in a secondary school was conducted. the results of the survey show that 29% of the students like reading entertainment magazines, including 17% who do not enjoy reading novels. the results also showed that 3% of the students do not like reading both entertainment magazines and novels.
find,
a. the selected student likes to read entertainment magazines.
b. the selected student likes to read novels.
c. the selected student likes to read entertainment or novel but not both.
d. p ( a n b )
e. p ( b n c ) |
|
|
|
|
|
|
|
发表于 22-8-2007 05:08 PM
|
显示全部楼层
原帖由 Leong13 于 22-8-2007 04:06 PM 发表 
1. a box contains 15 white balls and 10 yellow balls, by assuming that selection is made randomly one by one, without replacement find,
the probability that the third ball picked is white.
不论是第几粒球,它是白球的机率都是15/25=3/5。
即使是不放回地拿完25粒,每粒球是白球的机率也都是3/5。
这告诉我们不放回的情况下抽签,对大家都是公平的,
与先后次序无关。
算给你看:
P(第一粒是白球) = 15/25 = 3/5
P(第二粒是白球) = P(第一粒是白球,第二粒是白球) + P(第一粒是黄球,第二粒是白球)
= 15/25×14/24 + 10/25×15/24 = 3/5
P(第三粒是白球) = P(第一粒是白球,第二粒是白球,第三粒是白球)
+ P(第一粒是白球,第二粒是黄球,第三粒是白球)
+ P(第一粒是黄球,第二粒是白球,第三粒是白球)
+ P(第一粒是黄球,第二粒是黄球,第三粒是白球)
= 15/25×14/24×13/23 + 15/25×10/24×14/23
+ 10/25×15/24×14/23 + 10/25×9/24×15/23
= 3/5
。
。
。 |
|
|
|
|
|
|
|
发表于 22-8-2007 05:13 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 22-8-2007 05:19 PM
|
显示全部楼层
※ 经典概率题 ※
假设生男与生女的概率均等。
某家庭有两个孩子,
已知其中一个是男孩,
求另外一个也是男孩的概率。 |
|
|
|
|
|
|
|
发表于 22-8-2007 06:34 PM
|
显示全部楼层
原帖由 mathlim 于 22-8-2007 05:19 PM 发表 
※ 经典概率题 ※
假设生男与生女的概率均等。
某家庭有两个孩子,
已知其中一个是男孩,
求另外一个也是男孩的概率。
机率是 1/3 。。。。。。 |
|
|
|
|
|
|
|
发表于 22-8-2007 06:56 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 22-8-2007 07:08 PM
|
显示全部楼层
還有一題
a committee consists of the chairman and five other members. each time a resoltion is raised, the chairman and the committee members must accept or reject it. the probability that the chairman will accept a resolution is 3/5. the other members make their decision independently , but the probability that each member agrees with the chairman is 2/3.
a resolution is passed by the number of people who accept it exceeds the nuber of people who oppose it, or if the number of people who accept it is equal to the number who oppose it and the chairman is among those who accept it.
a. find the probability that a resolution is passed by the committee if the chairman oppose it.
b. find the probability that a resolution is passed by the committee. |
|
|
|
|
|
|
| |
本周最热论坛帖子
|