|
【纪念当年的帖子(2010)】Add Maths功课讨论区
[复制链接]
|
|
发表于 11-4-2010 11:30 PM
|
显示全部楼层
1)Differentiate 3x^2(2x-5)^4
2)y=3x^2+x-4,express the approximate change in y in terms of p when x changes from 1 to 1+p, p is a small change.
3)y=2/3u^7,u=3x-5.Find dy/dx in term of x
4)Water is poured in at constant rate of 0.2m^3s-1.Calculate rate of change of the height of the water level at the instant when height is 0.4m.
第四題的圖的Cone..高度是0.5m...diameter 是0.6m |
|
|
|
|
|
|
|
发表于 11-4-2010 11:46 PM
|
显示全部楼层
本帖最后由 数学神 于 12-4-2010 12:32 AM 编辑
1. Find the equation of the normal to the curve y=x(x-2)^2 + 3 at the point (1,4)
我只做到:y=x(x-2)^2 +3
=2x(x-2)
=2x^2 - 4x
然后我就卡机了,希望你们可以帮帮我,谢谢。
Enceladus 发表于 11-4-2010 21:27
这位网友,红色这边你要小心些
如果paper2,你可能会中扣分
应该是
y = x(x-2)^2+3
dy/dx = bla bla bla
【为了不误导他人,我删!】 |
|
|
|
|
|
|
|
发表于 11-4-2010 11:47 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 12-4-2010 12:29 AM
|
显示全部楼层
y = x(x-2)^2+3
dy/dx = 2x(x-2)
= 2x^2-4x
when x=1,
dy/dx = 2(1)^2-4(1)
= 2-4
= -2 (gradient of tangent)
数学神 发表于 11-4-2010 11:46 PM
喂喂喂,谁教你这样 differentiate 的?
y = x(x-2)^2
u v
dy/dx = u.dv/dx + v.du/dx
= x.2(x-2) + (x-2)^2
= 3x^2 - 8x + 4
Sub x = 1 into dy/dx
i.e. dy/dx = 3 - 8 + 4
= -1 (gradient of tangent)
Therefore, m normal = 1
Equation of normal, y - 4 = 1(x - 1)
y = x + 3 |
|
|
|
|
|
|
|
发表于 12-4-2010 12:30 AM
|
显示全部楼层
喂喂喂,谁教你这样 differentiate 的?
y = x(x-2)^2
u v
dy/dx = u.dv/dx + v.du/dx
...
乙劍真人 发表于 12-4-2010 00:29 不好意思,我跟着那位网友的,没想太多-.-'' |
|
|
|
|
|
|
|
发表于 12-4-2010 12:32 AM
|
显示全部楼层
回复 305# 数学神
你也还没睡哦.. |
|
|
|
|
|
|
|
发表于 12-4-2010 12:37 AM
|
显示全部楼层
Find the coordinates of the point on the curve y=4x^2 + 1/x at which the tangent is parallel to the x-axis.
我只做到这里:y=4x^2 + 1/x
dy/dx=8x - 1/x^2
Enceladus 发表于 11-4-2010 09:22 PM
跟着 walrein 的起步,let dy/dx = 0 (since parallel to x-axis)
8x - 1/x^2 = 0
8x^3 - 1 = 0
x^3 = 1/8
x = 1/2
Sub x = 1/2 into y, therefore y = 3
i.e. coordinate = (1/2, 3) |
|
|
|
|
|
|
|
发表于 12-4-2010 12:39 AM
|
显示全部楼层
本帖最后由 数学神 于 12-4-2010 11:14 AM 编辑
1)Differentiate 3x^2(2x-5)^4
永遠愛著許瑋倫 发表于 11-4-2010 23:30
【真人CHECKED!】
y = 3x^2(2x-5)^4
Let
u = 3x^2
du/dx = 6x
v = (2x-5)^4
dv/dx = 4(2x-5)^3(2)
= 8(2x-5)^3
dy/dx
= u.dv/dx + v.du/dx
= 3x^2[8(2x-5)^3] + [(2x-5)^4](6x)
= (6x)[(2x-5)^3] [4x + 2x - 5]
= (6x)[(2x-5)^3] (6x - 5) |
|
|
|
|
|
|
|
发表于 12-4-2010 12:39 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 12-4-2010 12:47 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 12-4-2010 12:48 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 12-4-2010 12:49 AM
|
显示全部楼层
不大对,
dv/dx = 4(2x-5)^3 . 2
乙劍真人 发表于 12-4-2010 00:47
sorry...一时的失误 |
|
|
|
|
|
|
|
发表于 12-4-2010 12:54 AM
|
显示全部楼层
不大对,
dv/dx = 4(2x-5)^3 . 2
乙劍真人 发表于 12-4-2010 00:47 真人再检查...pls..
谢谢指教~ |
|
|
|
|
|
|
|
发表于 12-4-2010 12:57 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 12-4-2010 01:03 AM
|
显示全部楼层
1)Differentiate 3x^2(2x-5)^4
2)y=3x^2+x-4,express the approximate change in y in terms of p when x ...
永遠愛著許瑋倫 发表于 11-4-2010 11:30 PM
咦,第四题是我那年的考题哦.. |
|
|
|
|
|
|
|
发表于 12-4-2010 01:16 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 12-4-2010 01:28 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 12-4-2010 01:43 AM
|
显示全部楼层
本帖最后由 数学神 于 12-4-2010 01:48 AM 编辑
我看第一眼觉得是 y = (2/3) u^7 哦.. where u = 3x-5
dy/dx = dy/du x du/dx
= (14/3) u^ ...
乙劍真人 发表于 12-4-2010 01:28
那么你的对...还是我的对?
原来题目另有玄机...有待发问者纠正题目>.<'' |
|
|
|
|
|
|
|
发表于 12-4-2010 01:49 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 12-4-2010 01:50 AM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|