查看: 1507|回复: 2
|
Help~STPM Trigonometry agn
[复制链接]
|
|
A+B+C=180,prove that cos(A+B-C) + cos(B+C-A) + cos(C+A-B)=1 + 4cosAcosBcosC |
|
|
|
|
|
|
|
发表于 4-10-2009 08:38 PM
|
显示全部楼层
cos(A+B-C) + cos(B+C-A) + cos(C+A-B)
= cos(180°-2C) + cos(180°-2A) + cos(180°-2B)
= - cos2C - cos2A - cos2B
= 1 - 2cos²C - 2cos(A+B)cos(A-B)
= 1 - 2cos²C + 2cosC cos(A-B)
= 1 - 2cosC[cosC - cos(A-B)]
= 1 - 2cosC[- cos(A+B) - cos(A-B)]
= 1 + 2cosC[cos(A+B) + cos(A-B)]
= 1 + 2cosC(2cosA cosB)
= 1 + 4cosAcosBcosC |
|
|
|
|
|
|
|

楼主 |
发表于 4-10-2009 10:07 PM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|