查看: 1231|回复: 6
|
Sequence and Series的问题..........
[复制链接]
|
|
怎样找 the sum of Ur=1/r(r+3)........还有sum of Ur=2r-1/r(r+1)(r+2)....??刚刚在复习.... |
|
|
|
|
|
|
|
发表于 11-5-2007 11:19 AM
|
显示全部楼层
先试做第一题....
1/(R*(R+3)) 把它分解成A/R + B/ (R+3), 于是得A=1/3, B= -1/3,
因此, U(1) = 1/3 - 1/3(4) ---1
U(2) = 1/3*2 - 1/3*5 ---2
U(3) = 1/3*3 - 1/3*6 ---3
U(4) = 1/3*4 - 1/3*7 ---4
由此可以看出, 1 和 4 可以约简, 此外, 2 和 5 , 3 和 6 都有相同可是加减号相反的TERM,
最后得, SUM = 1/3 + 1/6 + 1/9 - 1/ (R+1)-1/(R+2)-1/(R+3).... |
|
|
|
|
|
|
|

楼主 |
发表于 11-5-2007 11:22 AM
|
显示全部楼层
多谢jinqwem......可是你这招我会了...我要用method of differences...我忘记说明.. |
|
|
|
|
|
|
|
发表于 11-5-2007 08:52 PM
|
显示全部楼层
1/r(r+1) = 1/3r-1/3(r+1)<br />
= 1/3 [ 1/r-1/(r+1)<br />
<br />
let f(r)= 1/r+1/(r+1)+1/(r+2)<br />
sum of Ur= 1/3 [ f(1)-f(2) ]<br />
f(2)-f(3)<br />
f(3)-f(4)<br />
.<br />
.<br />
.<br />
f(n-1)-f(n)<br />
f(n)-f(n+1)<br />
= 1/3[f(1)-f(n+1)]<br />
= 1/3[1/1+1/2+1/3-{1/(n+1)+1/(n+2)+1/(n+3)}] <br />
我想應該是這樣做。
[ 本帖最后由 Leong13 于 11-5-2007 08:54 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 11-5-2007 08:53 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 11-5-2007 10:59 PM
|
显示全部楼层
这个方法可能比较长
第一题
the sum of Ur=1/r(r+3)
Ur= (r+1)(r+2)/r(r+1)(r+2)(r+3)
= r/(r+1)(r+2)(r+3) + 3/(r+1)(r+2)(r+3) + 2/r(r+1)(r+2)(r+3)
= 1/(r+1)(r+2) + 2/r(r+1)(r+2)(r+3)
= Vr + Wr
Vr=1/(r+1)(r+2)
let f(r)= 1/(r+2)
f(r-1)=1/(r+1)
f(r)-f(r-1)=-Vr
.
.
.
sum vr = ...
Wr=2/r(r+1)(r+2)(r+3)
let g(r)= 2/(r+1)(r+2)(r+3)
g(r-1)=2/r(r+1)(r+2)
g(r)-g(r-1)=-3Wr
.
.
.
sum wr = ...
sum of ur = sum of vr + sum of wr
= ...
第二题
sum of Ur=2r-1/r(r+1)(r+2)....
Ur=2/(r+1)(r+2) - 1/r(r+1)(r+2)
= Vr + Wr
Vr=2/(r+1)(r+2)
let f(r)= 2/(r+2)
f(r-1)=2/(r+1)
f(r)-f(r-1)=-Vr
.
.
.
sum of vr = ...
Wr=1/r(r+1)(r+2)
let g(r)=1/(r+1)(r+2)
g(r-1)=1/r(r+1)
g(r)-g(r-1)=-2Wr
.
.
.
sum of Wr=...
sum of ur = sum of vr + sum of wr
= ...
有错的话请告诉我 |
|
|
|
|
|
|
|

楼主 |
发表于 12-5-2007 11:24 PM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|