查看: 11376|回复: 74
|
SPM 数学讨论区(有新问题求助)
[复制链接]
|
|
我想请问ogive一定要从origin开始画吗?
还有找1st和3rd quartile的formula是不是和找median的一样,只是和median有关的换成1st or 3rd quartile是吗?
[ 本帖最后由 menglee 于 5-5-2008 12:44 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 10-7-2006 04:29 PM
|
显示全部楼层
并不一定要从 origin 开始。
1st ,3rd quartile 的 formula 和 median 的大同小异。 |
|
|
|
|
|
|
|

楼主 |
发表于 13-7-2006 05:45 PM
|
显示全部楼层
不好意思,又麻烦你们了。
Given the mean of 5 numbers is 11 and σ=6.
If every data is multiplied by 3 and added 2, find σ^2 |
|
|
|
|
|
|
|
发表于 13-7-2006 05:53 PM
|
显示全部楼层
Given the mean of 5 numbers is 11 and σ=6.
If every data is multiplied by 3 and added 2, find σ^2
mean = E(X) = 5
variance ,Var(X) = o^2 = 6^2 = 36
Let new data = Y
所以 Y = 3X + 2
所以 new mean E(Y) = E(3X+2) = 3E(X) + 2 = 3x5 + 2 = 17
New variance Var(Y) = Var(3X+2) = Var(3X) + Var(2)
但是我们知道 Var(K) = 0 ( k 是一个 constant) ,所以 Var(2) = 0
而且 Var(nX) = n^2 Var(X) ,所以 Var(3X) = 9Var(X) = 9x36 = 324
所以 Var(Y) = 324 (也就是你要找的 o^2) |
|
|
|
|
|
|
|

楼主 |
发表于 18-7-2006 08:55 PM
|
显示全部楼层
score 0 1 2 3 4
frequency 7 10 x 15 8
If the median is 2, find the smallest value of x. |
|
|
|
|
|
|
|
发表于 18-7-2006 09:17 PM
|
显示全部楼层
total = 40 + x
median = (40+x)/2
==> median < 10 + 7 + x ==> (40+x)/2 < 17 + x
=> 40 + x < 34 + 2x
=> x > 6
=> minimum x = 7 |
|
|
|
|
|
|
|

楼主 |
发表于 26-7-2006 04:50 PM
|
显示全部楼层
Find the equation of tangent to the curve y=3x^2-2x+5 at the point (1,6). |
|
|
|
|
|
|
|
发表于 26-7-2006 06:24 PM
|
显示全部楼层
原帖由 menglee 于 26-7-2006 04:50 PM 发表
Find the equation of tangent to the curve y=3x^2-2x+5 at the point (1,6).
dy/dx = 6x - 2
at (1,6) , dy/dx = 6(1) - 2 = 4
gradient = 4
equation : y - 6 = 4 ( x - 1)
=> y = 4x + 2 |
|
|
|
|
|
|
|

楼主 |
发表于 27-7-2006 03:14 PM
|
显示全部楼层
上面那一题只能用differentation的方法来做吗?我还没学到厄。。。
顺便帮朋友问问lower 6的问题:
Given the equation 2^2x + (64)(2^-x) = 32. Besides 2, find the value of x. |
|
|
|
|
|
|
|
发表于 28-7-2006 02:54 PM
|
显示全部楼层
Given the equation 2^2x + (64)(2^-x) = 32. Besides 2, find the value of x.
Let 2^x = y , so
y^2 + 64/y = 32 ==> y^3 - 32y + 64 = 0
=> (y-4)(y^2 + 4y - 16 ) = 0
=> y = 4 , -2 + - Sqrt[ 20 ]
But y = 2^x > 0
so 2^x = 4 OR -2 + Sqrt[ 20 ] ......
x = ...... |
|
|
|
|
|
|
|

楼主 |
发表于 14-8-2006 04:44 PM
|
显示全部楼层

The diagram shows two sectors OPQ and ORS of two concentric circle with centre O. Given ∠POQ = θrad, the length of arc PQ is twice the length of radius OP and the length of radius OR = 8cm, find
a)the value of θ
b)the perimeter of the shaded region |
|
|
|
|
|
|
|
发表于 14-8-2006 04:52 PM
|
显示全部楼层
关键在于 formula :
arc length = angle(radian) x radius |
|
|
|
|
|
|
|
发表于 14-8-2006 05:30 PM
|
显示全部楼层
原帖由 menglee 于 14-8-2006 04:44 PM 发表

The diagram shows two sectors OPQ and ORS of two concentric circle with centre O. Given ∠POQ = θrad, the length of arc PQ is twice the lengt ...
Let OP = r_1 , OR = r_2 = 8cm , PQ = 2 x OP
= 2 x r_1
= 2 r_1
a) s = r θ
PQ = OP x θ
2 x r_1 = r_1 x θ
θ = 2 rad
b) s = r θ
SR = OR x θ
SR = 8cm x 2 rad
= 16 cm
SQ = PR
= OR - OP
= 8cm - r_1
Therefore,the perimeter of the shaded region,
SQ + PR + SR + PQ
= 2(SQ) + 16cm + 2 r_1
= 2( 8cm - r_1) + 16cm + 2 r_1
= 16cm - 2 r_1 + 16cm + 2 r_1
= 32 cm
[ 本帖最后由 ~HeBe~_@ 于 15-8-2006 03:45 PM 编辑 ] |
|
|
|
|
|
|
|

楼主 |
发表于 15-8-2006 03:17 PM
|
显示全部楼层
可是答案是32cm。老师说这个问题给少了一个资料。dunwan2tellu兄,能不能指点指点? |
|
|
|
|
|
|
|
发表于 15-8-2006 03:48 PM
|
显示全部楼层
回复 #14 menglee 的帖子
对不起,我粗心大意。。。。。
呵呵。。。
你再看看以上的解答吧! |
|
|
|
|
|
|
|

楼主 |
发表于 23-8-2006 04:27 PM
|
显示全部楼层
An inverted conical container has a diameter of 0.8m and height of 0.6m. Water is poured into the container at a constant rate of 0.2m^3 s^-1. Calculate the rate of change of the height of the water level at the instant when the height of the water level is 0.3m.
(Use pi = 3.142, volume of cone = 1/3 pi*r^2*h)
我是这样作:
v=1/3*pi*r^2*h
dv/dh=1/3*pi*r^2
dv/dt= dv/dh x dh/dt
0.2 = 1/3*pi*r^2 x dh/dt
dh/dt= 1.194
可是答案是1.591 |
|
|
|
|
|
|
|
发表于 23-8-2006 06:55 PM
|
显示全部楼层
当你写 V = 1/3 * pi * r^2 * h 时,r 和 h 都是你的 variable , 所以你不可以直接 dV/dh . 你必须先找出 h 和 r 的关系,带入 V = 1/3 pi r^2 h , 得到一个只有 V 和 h 的 formula , 这样你才能找 dV/dh .
h 和 r 的关系可以从三角形的比例看出来。Ex : h : r = height of con : radius of con = 0.6 : 0.4 = 3 : 2
==> h/r = 3/2 ==> r = 2/3 h
所以 V = 1/3 * pi * (2/3 h)^2 * h = 4/27 * pi * h^3 .
现在你再试试找 dV/dh 看 |
|
|
|
|
|
|
|

楼主 |
发表于 24-8-2006 10:27 AM
|
显示全部楼层
就如你说,v=4/27*pi*h^3
dv/dh=4/9*pi*h^2
dv/dt= dv/dh x dh/dt
0.2 = 4/9*pi*0.3^2 x dh/dt
dh/dt= 1.591 |
|
|
|
|
|
|
|

楼主 |
发表于 19-9-2006 03:20 PM
|
显示全部楼层
请问一下,如果dy/dx=2x,那么dx/dy是1/2x吗?
请问这么做对不对?
我在做关于chain rule的问题时常要把一些equation inverse过来。 |
|
|
|
|
|
|
|
发表于 19-9-2006 04:58 PM
|
显示全部楼层
原帖由 menglee 于 19-9-2006 03:20 PM 发表
请问一下,如果dy/dx=2x,那么dx/dy是1/2x吗?
请问这么做对不对?
我在做关于chain rule的问题时常要把一些equation inverse过来。
可以这么做。 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|