查看: 2619|回复: 41
|
太空航行与技术导论
[复制链接]
|
|
发表于 28-12-2008 09:53 PM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:35 PM
|
显示全部楼层
的运用,比如建立在木星上。太阳能聚焦站必须靠近太阳才行,但是光束发射站却可以远离太阳。当然此时就无法运用太阳能而必须使用核融合发电来作为动力来源了。这会使成本增加,不过这是要在远地行星运用光压系统所必须付出的代价。
由于可以自由选用光束波长(一般是在建立发射站时就决定波长,可调频的光束发射站则会在设计时有一波长范围限制),因而可以控制光束发射天线的面积与光帆的面积,甚至可以控制光帆的重量。这类系统通常有较聚光站有更佳的聚焦能力,因为他能够调整波长因而能够照射的更远而不衰减。但在长距离照射下仍然有一些问题存在。
基本上光帆的能量转换效率主要有两个参数影响,一是太空船速度,另一是光线聚焦能力。就光帆而言,光束直径小于等于帆面直径时,所有能量直接投在帆面上,此时光线会被反射与吸收。但在太空船速度低时,入射光线以反射为主,而反射产生的能量传递效率是很低的。
而太空船速度一旦加到接近光速时,光线与太空船之间的都卜勒效应便会急遽增大,光线由偏向反射变为偏向于吸收,能量传递效应就会增加。因此太空船速度越大,能量吸收效率就越高,从接收的能量中所获得的加速度就越大。但在距离一远,光束直径大于光帆的直径时,能量便不是完全投在光帆上了,此时就会有光束扩散的能量损失。这个损失与太空船与光源距离的平方成正比。而要减少这种损失就必须增加光束的聚焦能力。或者采用暴力法,直接在远距离时增加输出以弥补散射的损失。
以上两点跟聚光站是一样的,但就第二点而言,由于增加光束发射站输出的困难度与成本远较聚光站的纯粹增加反射板高,因此就光束发射站而言,采用第二种方法很容易不符合成本,因此仍将以增加光束聚焦能力为主要手段。需注意的是这里的「能量光束」并非单指可见光范围的光线而言,而是在长到公分波,毫米波等级的电磁波束到波长极短的硬X射线光束范围内,这就是可挑选波长的光束发射站的优势了。
一般来说,光束波长短则聚焦能力越强,所使用的发射天线面积也就能够越小。比如若使用硬X射线这种极短波长的光束,则发射站的天线口径可能只有数百公尺到数公里。波长一长则天线口径就会越大。但波长不是越短越好,还需要光帆的配合,光帆是否能够吸收该波长的光束,或者此种光帆是否能作的很薄很轻,这些都是考量重点。同时短波长不一定保障能缩小天线口径,因为若是发射能量固定,则口径越小发射天线表面的能量密度就会越大,甚至有可能大到光束发射瞬间就烧掉发射天线,因此天线口径还是有下限的。比较可能的是用较长波长的光束,并使用天线阵列群来达成大孔径的需求。
另外波长一长,帆的重量便有可能降低。因为光线在碰到孔径比其波长短的金属网格时会完全反射,跟碰到没洞的金属板效果是一样的。一般家庭的微波炉便是运用这种效应让人能够看到加温中的食物(不过还是建议大家别去看),使用波长较长的微波或是毫米波光束,则便可使用由金属细丝织成的网状光帆,如此不需要特别技术便可自然降低光帆重量。也可以在相同的总重量下增大光帆面积。
基本上,聚光站将会被运用在近距离的低速的光帆船上,而光线发射站则会应用于远距离的高速光帆船之上。就内太阳系运作或是飞向远地行星任务而言,聚光站是一个相当好的选择。而在远地行星飞向内太阳系(这还必须要抵消太阳的光压)或是往更远的太阳系外层移动则以光线发射站系统为佳。这两种系统算是互补的形式,前者应该会建立在水星以内的太阳轨道上,后者则应该会建立在木星上,从木星提取燃料来运作。
光压推进系统的最大优点是价格,因为其太空船不需要携带燃料,燃料费用自然就省下来了。聚光站与光束发射站虽然 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:50 PM
|
显示全部楼层
真是有一篇够长的好文章 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:50 PM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:49 PM
|
显示全部楼层
综合以上的方案,在战斗前的索敌阶段,大约只有(1)(6)两项可以同时实施,并使被侦测距离减少10%至40%之间(但有时间限制),或许亦可以因此而获得一个先开火(使用飞弹)的机会。战斗发生后,则执行(2)(5)两项以欺敌,降低自己被击中的机率。其中(5) 具有战略性欺敌的意义,也可能提早使用让舰队获得战术乃至于战略优势。至于(3)(4)则不切实际或是意义不大。
不过客观来看,减掉一二十个百分比,甚至假设能减掉五十个百分比的被侦察距离,并不会因此而获得多少的优势。这是因为初始基数太大的关系。例如十三亿公里,4300光秒的被侦察距离就算减半,也还剩下至少六亿公里/2000光秒,七十天的航行距离。此时固然可以先敌侦测、发射飞弹,但也有可能因此而被发现,因为飞弹发射的加力燃烧阶段将会放出相当大的热讯号。
飞弹上当然不可能装设大规模的冷却系统,但是小规模的或许做的到,如使用瓶装液态氦释放的方式可以提供某种程度的降温冷却效果。当然这也是有其限度的。且携带液态氦会占去一定程度的酬载重量。
最后提一下现代军舰、战机的雷达匿踪效果以做为比较参考。第一代匿踪舰拉法叶的设计使其RCS降为传统军舰的5%左右,最新第二代的 Visby则降为0.001%。至于空军方面,新一代战机设计可使RCS降为传统的10%,匿踪强国老美新型机F/A-18 E/F降为传统机的%1,最先进匿踪机F-22则降到传统机的0.01%以下。至于红外线匿踪效果就差了许多。
附带一提,由之前的讨论中也可发现出一个有趣的事实,也就是即使不使用主动热能转向储存系统或是其它任何反侦测作为,一般太空船随著位置的不同,其被侦察率就会有很大的差别。比如说前述的420k(摄氏146.5度 )与320k(摄氏46.5度)两个温度基本上可以视为同一艘船分别在地球轨道与火星轨道时的船壳温度。而后者的热辐射量仅为前者的 33.7%。这也就是说,在近日行星因为恒星照射导致的船壳平衡温度上升,使船舰被侦察机会(或是被侦察的距离)可能达到位于远日行星轨道时的三倍之谱。距离恒星越远日照影响越少,则被侦察的机会就会下降(即使敌我距离依然相同)。但需要注意的是,这种下降的效果会递减,而且是有其极限的。因为当太空船完全排除日照加温的问题时,本身还是会有引擎废热产生的温度。就算把引擎关掉,也必须用电池维持维生系统继续运作,否则船员就会死亡,所以仍然会有废热散出(当然这会比开引擎时的温度更低)。而完全没有热量散出的船显然就是幽灵船了.....
三、太空中的长程通讯
如何在广大的空间中进行通讯始终是一个问题,特别是基于军事需求的通讯更是如此。除了要使想通知的对象知道自己在说什么之外,还得防止不想通知的对象知道自己在说什么,而讯息的内容又要穿越广大的空间。在星球上通讯可能会受到天候地形等因素的影响,但在太空中,距离本身则是最大也是最主要的障碍。
举个简单的例子,地球距离月球约1.3 光秒,其间的通讯延迟已经明显到足以影响某些军事用途上的即时资料链传输了。且此种距离产生的通讯延迟问题是无法避免的。因此通讯延迟的问题会将舰队的疏散距离限制在某种程度内。基本上不会大于一光秒。
此外,除了通讯延迟之外,还有讯号随距离衰减的问题。不过考量前述对于微弱讯号的高度侦测能力(前面提到的对远方目标侦测能力,事实就是对目标反射/发射光讯号的侦测接收能力),以及太空船能够提供的出力,这方面问题并不大。
至于通讯的方式则会以指向无线电,或是指向光通讯为主。舰队里舰船间的联系会用低功率雷射,或许就直接用点防御的雷射炮塔来实施,以定时的光束通讯网的节点通讯将整个舰队连结起来。至于对星球、太空站这些固定基地长程通讯则两者都有可能。不过长程通讯容易被截听(即使是使用指向性电波、光束也是如此)而导致泄密,因此应该会尽量避免。
至于长程通讯的距离,事实上可以轻易跨越整个恒星系。最近的例子就是离开太阳系的航海家二号,它在飞越冥王星之后,仍能接受地球来的通讯,并将最后拍摄的照片传回 110亿公里以外的地球。而此时其所使用的钸电池仅剩下数瓦的功率输出,相当于一支手电筒的出力。当然地球方面在接收此种功率时,必须使用位于波多黎各,口径达三百公尺的超大型射电天文望远镜,甚至考虑使用地面台与卫星同步接收以产生具有超大口径接收器的接收效果。换成是太空船的话,则没有电力不足的问题,可以使用数百上千瓦的指向天线在整个星系内实施直接通讯。
此外,要对远方舰队提供战略性的指示,也有可能使用改装的通信用飞弹来实施,以减少遭通信内容遭截收的可能性。所以说飞弹的应用层面是很广的。将原本设定中的50/100吨级、秒速一万公里的飞弹拆除攻击用弹头,装上小型指向电波/通信天线,则由于弹头重量大幅减轻带来的质量比增加,速度有可能进一步提升。而这一类飞弹可以在数十个小时内射到数千上万光秒距离外,与附近的舰队进行资料链接传送信文。信文传送完毕后,通信飞弹可以定时或在舰队遥控下就地引爆以保持电讯内容的秘密。 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:49 PM
|
显示全部楼层
但此种致冷程序将会造成一个现象,即将外壳热点维持在一个较低水平的同时,舰内热热库所储存的热能(即其温度)将会逐渐提高,当热库温度越高时,致冷效率将会逐渐下降,所需投入的能量将会越来越多。而到一个极限时将会需要关闭致冷机,实施放热作业将热库能量一次放出。此时船舰的平均温度将会在短时间提高很多。
简而言之,这是一个主动的热能转向系统。可以投入能源的代价在一个时间区段内暂时储藏热量以降低船舰的被侦测性,并在时间结束后将热能全部放出。换句话说,这是一个限时的有限程度匿踪系统,效用维持时间视船体与装备的不同,应该在数小时到十数小时左右。
此种匿踪系统的最佳开启时期应该在船舰加速到最高巡航速度并将航向指向预定目标后,关闭主引擎(或使之维持低功率运转)实施惯性飞行一段时间,此时船体热平衡温度将低于加速时期。在这时使用超导电池所储存的能量来驱动致冷机,使船体温度与热讯号进一步降低,在致冷机运转的时间内争取潜进目标与及早发现敌舰的机会。并在双方交火或己方确定被侦测后,才关闭致冷机实施放热作业,并重新启动主引擎。
需注意致冷机的效果有其限制,当热库与冷库温度越高时,效率将会越低。同时也不可能把一艘平均温度在320k(摄氏46.5度)的太空船冷却一两百度到220k,因为有热库相对质量容量限制的缘故。一般对一艘大型军舰而言,至多降低数十度,并维持十个小时左右。
至于温度下降获得的效果,可参考热辐射公式:
Eb=αT^4α=Stefan-Boltzmann constant
从公式可以看出,同一物体之辐射热能与温度的四次方成正比。假设主动热能转向储存系统将船壳平恒温度降低20度,从320k降至300k,辐射量将降为原先的77.24%。若能降低40度,则辐射量将降为原先的58.6%
从以上的公式亦可看出,起始温度对于效果也有重大的影响。例如若维持同样的降幅,但起始温度从320k提升至420k,则温度降低20度与 40度带来的新辐射热量将分别为82.27%与67% ,可看出虽然温度降幅相同,但辐射量减少的效果明显降低了。这种情况指出一个重点,即在近日行星附近的日照强烈使船壳温度大增的情况下,主动热能转向储存系统的效能将会受到很大的影响。
而这一类主动热能转向储存系统一般只能装备在具有较多的超导电池与较大热库容量的中大型军舰中。基本上越大型的军舰,除电池与热库容量较高带来的较长热能转向时间外,亦可提升致冷机的效率使船体平衡温度降的更低。基本上这就象是大冰箱通常能够比小冰箱来的冷一样。
需注意的是,是,军舰在降温前的平均温度不会因为大小不同而有太大的差异,因为较大的军舰虽然需要消耗较高的能量,但同时也有较大的质量来平均吸收废热使船壳温度不致大幅提升。简单的例子是甲乙两桶水,甲桶一公升,乙桶十公升,两者质量相差十倍。假设对甲输入热量一千卡,乙桶输入一万卡。虽然输入的能量有十倍差距,经由质量差距加以平均,两桶将同样上升一度。
事实上,如果就能量使用效率来分析,一条十万吨等级军舰平时运转消耗的能量将不会达到一万吨等级军舰的十倍。因为规模的增加不只增加消耗的能量,同时也会使能量利用效率也跟著增加。这是工程学与经济学上的有趣现象。当然这指的是平常航行时,而不是装备特殊武器并予以发射的情况。在平常的情况下,一条大船的温度可能反而会比小船低一点点,差个一度半度左右。
到此我们可以大致描述使用此种主动热能转向储存系统的效果。从对方侦测系统看来,较大的军舰可能是轮廓大而黯淡模糊的光点,较小的军舰则会是较小而较亮较明显的光点。因此而会出现较小的船舰反而比较大的船舰容易被侦测到的奇异状况。
最后,此种主动热能转向储存系统在运转时所能获得的匿踪优势,应该直接正比于其降低的辐射热量。在遭到侦测距离的降低效果视环境而言,大约在 10%至40%之间。最后必须再强调一次,由于需要把储存几小时的热量在相对较短的时间内放出,此系统启动超过时间限制后的强制散热作业会反过来把被侦测距离提升数倍之谱。 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:48 PM
|
显示全部楼层
这是因为在化学里面,有种叫做光谱分析的技术,常被用在天文观测上。此种技术是观测物体发射或反射的光线,其学术名称叫做「发射与吸收谱线」,从差异中检查出其构成元素、温度,有时甚至可以从光谱红移或蓝移规模估计出目标的速度与方向。几十年来人们使用此种技术来分析数千万光年的星系构成的物质,要分析数百上千光秒外的物体构成当然是轻而易举。而发射、吸收谱线是物质的一种物理特性,只根据观察目标的构成元素而定,因此是无法伪装的。
换句话说,诱饵不但形状大小与发热量要与真货相仿,连表面材质也要一样才行。最坏的情况是,你需要为诱饵准备一个外壳。虽然很薄,但材质却要与己方的舰艇相同,这会造成诱饵的制造、携带与布放难度大增。
不过,也不是完全没有机会。有个构想就是在所有船舰表面上一律漆上指定涂料,而诱饵则是用模型气球喷漆。这一来就可以使模型诱饵表面的材质反射率与真货一致化,如此就能有某种程度的鱼目混珠的可能性。
当然,模型诱饵里面热源产生器等辅助装备是必要不可缺少的,而且放热特性、热源分布必须与模拟的真实舰非常类似,否则是马上就会被看穿,不是随便放个怀炉在里面就可的。因此模型诱饵的重量与成本都会达到某个程度,携带数量就会受到很大的限制。
附带一提,环境对于模型的使用也会有很大的影响。比如在内行星区域就必需考虑恒星照射对军舰与模型诱饵的加热程度差异问题。这也会影响模型诱饵的运用。
需注意的是,使用模型诱饵对降低被侦测率没有任何帮助,它只能增加敌人的目标,帮忙分散敌人的炮火而已。所以通常只能用在交战或即将进入交战时。如果在敌人还没出现就放出模型,从整个舰队的角度来看等于热点增加,反而会增加舰队的被侦测机率。
在这里必须提到一件事,地球环境中有所谓的「热辐射匿踪」的考量。因为热辐射也是(或者将是)导致被侦测的重要因素。在大气环境中有所谓的「大气窗口」,也就是某些波长的电波/辐射线可以传播很远的距离,而其它波长的电波辐射则会很容易被吸收,无法传播很远。而匿踪载具应尽量避免在窗口波长释放辐射,可能的话,最好将辐射波长特性改变,使其偏移窗口而能很快被大气吸收,如此方能不虞被远方敌人侦测。
故美国在匿踪飞机上除了设法降低排气温度外,往往也会使用特殊材料或涂料来喷涂热点。此法不会降低热能辐射总量(此值只受温度影响,是理论限制),但有可能改变辐射的波长,使其产生偏离大气窗口的效果。这就是所谓的「抗红外线涂料」的运作原理。不止飞机,目前许多军舰、战甲车都有使用这一类的涂料来提高对抗红外侦测的隐身性。
不幸的是,太空中没有大气,因此也就没有可以吸收特定波长的窗口可言。故太空船抗红外线涂料就算涂得再多也无法降低被侦测率。这也是太空中匿踪困难的另一个重要因素。
最后诱饵除战斗时用以欺敌外,拿来执行战略层级的欺敌作业也是可以的,这是太空环境的特点。整只诱饵舰队只要放出去排好阵型,就会持续惯性前进,这时主力舰队可以转弯走别的路线进袭。这种作业一般应该会在数十至上百光秒外执行,也有可能在数千光秒外实施,以将敌人舰队引诱至错误的方向。
(6)主动热能转向储存系统
这是可行性与效果比较高的匿踪方法。其所依据的理论一样是热力学第二定律。热力学第二定律里除了提到热机外,还有另一种相反过程的装置叫做致冷机(Refrigerators)。 其操作程序为外界对它做功,让它能由较低温的热库吸取热量,并将它完全排放到较高温的热库中。与没有100%的热机相同,我们也不可能制造出理想的致冷机,整个过程只是从较低温处吸取热量,并将它完全排放至较高温处而已。致冷机的最简单例子就是电冰箱与冷气。
简而言之,太空船动力系统属于热机的一种,其散出的废热将使其极易遭受侦测。若在太空船上针对某些热点装设致冷机吸取其热能,并将热能储存在船舰内的热库中,则太空船对外散出的热能就会降低,从而降低其被侦测的可能性。例如假设太空船启动致冷机之前,船本身的热平衡使船外壳平均温度达到 320k,启动致冷机之后,则有可能将船外壳平均温度降低到300k。此时船体的辐射热将会降低,可降低己舰遭到侦测的可能性。 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:47 PM
|
显示全部楼层
注:达尔文计画的网址
http://ast.star.rl.ac.uk/darwin/
需注意的是,这类监视系统乃是一种被动侦测系统。不会有电波雷达主动拍发讯号的缺点。但如果有需要的话,仍然可以使用雷射主炮╱副炮以低功率发射光束照射指定区域,再用侦测阵列接收其反射光来判定目标精确位置。不过大部分的情况下是不需要这么做的。
在这里我们必需考虑所谓的热力学第二定律:在自然界的过程里,热能只会从较高温处往较低温处传递。而将热能转换成动力的机器(例如太空船引擎)称为「热机」。无论任何热机,都只能将部份的热能转换成机械功,而其余的部分就会成为无法利用的废热流失。世界上没有百分之一百效率的热机,必然会在能量的转换过程中产生废热。
这个定律指出一件事,即太空船在引擎运转的时候必然会产生废热。而这个热讯号在电子光学监视系统的屏幕上将会呈现一个明亮的讯号。因此我们可以这么说:热力学第二定律注定太空船无法不主动放出讯号,也就注定其必然会被侦测到。
接著,由于太空中3k的背景温度和太空船的废热呈现一个巨大的反差,远高于地球表面目标和环境的温差,因此严重凸显了太空船本身的讯号,使太空船更易于被侦测。这使拥有巨大的电子光学监视元件阵列的太空船对于船舰目标拥有极高的被动侦测距离。以前述的GEODSS系统所展现出来的侦测能力等级来推估,配置于太空船上的大规模电子光学监视系统的侦测距离将可以达到数千光秒之谱。举个浅显的例子,这相当于一艘位于地球轨道的太空船可以使用其侦察系统搜获正位于土星轨道上的一艘长一百公尺的太空船(平均距离约十三亿公里,4300光秒)!而该太空船若以每秒一百公里的速度穿越这个距离则总共需时约为 150天,即五个月。 且如果使用舰队的集团整合侦察,则侦察距离可以再延长数倍。此外,从热源分布型态上可以大致辨识出目标太空船的型号。
由以上资料可以很清楚的发现一件事,太空船舰,特别是拥有先进侦测系统的军舰的侦测能力将会远远高于其武器射程与船只航程,这在过去的地球上是没有任何前例的。过去从来没有任何侦察单位能够在一个月以上的时间距离外侦测到敌人部队的情况,通常只有数小时的时间距离,只有构成完整组织的军团级、国家级侦察网统合协力下才能勉强获得数天到一周的侦察时间距离/预警时间,周以上的时间距离则通常只能由侦察以外的情报手段才能获得。而太空船舰几乎是每艘军舰都是单舰就具有这种超长程侦察能力,这完全是由于太空特殊的背景环境所导致的结果。
最后再提一下,这里所提到的侦测系统只有电子光学望远镜,不包含其它的系统,比如重力侦检器这一类东西。未来可能还会有其它更有效的东西出现,不过光只这一项,太空战舰就可以用的很高兴了。
又,基于能自动化运作、拥有长时间的宽广空域大量目标监视能力等特性,上述系统除装在太空战舰上,也会装在轨道卫星、太空站、浮游工厂或任何大型的太空平台上。其目的是为了要侦察接近的小行星体以防止自己遭到撞击。而各太空站的侦察平台将会互相分享资料,构成完整的的远太空小行星监视网,并在有需要时对各单位发出小行星体接近警告。此外,对于高速的微流星体、小型碎片与大型尘埃颗粒等防护则将会使用微波雷达在大约五千到一万公里的半径以内进行扫瞄,并使用雷射炮执行清除作业。
以上所说的是军舰使用本身的舰体感测阵列实施侦察的状况。除此之外,也有在必要时使用无人侦察装置实施长程搜索的方法。最简单的方法就是把飞弹拆掉弹头,换装侦察头(较小的球型感测阵列)与通讯装置,并发射到遥远的距离外实施侦察作业。此法可以弥补舰体侦察器的不足。
例如假设舰体感测阵列侦察范围是4000光秒,若想要对于8000光秒外的宙域实施侦察而派出秒速一百公里的侦察舰,需时五个月才能抵达能将目标区纳入侦察范围的位置。若是使用秒速一万公里的侦察飞弹,则大约在发射后70hr后就可以获得目标区的一些资料。虽然侦察飞弹的小型侦察头侦察能力远比不上军舰舰体传感器阵列,可能只能扫瞄飞弹外围数十光秒的区域,但三天后可以得到的少量资料无论如何都比五个月后才能得到的详细资料来的有用。 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:47 PM
|
显示全部楼层
值得一提的是, GEODSS系统在经过1996至1998年的改装,换装新型CCD元件后,投入近地物体监视计画( Near-Earth Object Program)以侦测可能对地球造成威胁的小行星体。期间内连续发现数个新的小行星,并且在任务中证实了其威力:改装后的GEODSS主望远镜可以在 1AU(一亿五千万公里或500光秒,地球到小行星带前端的距离)之内侦察到直径100公尺等级的小行星体。
注意,此例中的系统是位于大气中的陆基系统,且NEOP计画里查找目标是本身不发热的小行星。同样规模的系统拉到太空中以免除大气干扰,加上以具有动力会产生废热的人造飞行体为目标,则侦测能力将有可能提升五至十倍左右。
注:美国空军太空司令部介绍GEODSS的网页,其中有白沙站的照片。
http://www.spacecom.af.mil/hqafspc/Library/FactSheets/FactsSheets.asp?FactChoice=8
而将来类似但更先进的系统也会被配置在太空船上,成为太空船的主要侦测系统。在太空军舰上将会把使用宽频谱的光感元件阵列,或者也有可能混装不同频谱不同性能的元件组合构成整个阵列,这些元件阵列将以环带的型状布设在船壳上,并以光纤将收到的资料集中到舰内计算机中处理。而计算机将根据资料库滤除所有恒星、行星、小行星体与拥有固定航线的商船讯号,只留下不明的资料。此外,也有可能出现专职的侦察舰,即将舰体表面完全布满光感元件,以较高的元件数量来得到较大的单舰侦测分辨率。
不过,把光感元件直接暴露在外可能有易于受损的顾虑。此时也可能会稍微改良一下,将光感元件完全收到船体内,船壳外改布设单纯的光接收器阵列版(可能是光纤端子一类的),然后使用光纤线路将光子讯号收到船内,经过光量检测器、滤光镜(选择性路径)、分光装置等,最后再投射到光感元件上。如此不但可以物理上保护光感元件,还可在遭遇强光状态时,使入光先透过滤镜让能量降低至安全水平内,让系统能在强光环境下持续运作。最后更可以透过分光装置让光线同时进入对于不同波段敏感,或具有不同性能的不同光感元件或光学镜头内,以对入光进行全频谱的同步扫瞄处理。这种选择性的路径通过是电子光学系统的独门特技,目前已被运用在美国为NMD/TMD系统所发展的的最新型光学侦测仪器上。
底下是一个分散式全频谱同步扫瞄处理系统的简单流程示意图:
<pre>
------------分光装置--|-光感元件1-计算机1--|
| | |-光感元件2-计算机2--|
光接收器--光量检测器--| | |-光感元件3-计算机3--|--中央计算机
| | |-光学镜头1-计算机4--|
--滤光镜--| |-光学镜头2-计算机5--|
</pre>
在宙域扫瞄策略上,则会将全天球划分成数百个区域,而光感阵列环带亦以一定数量的阵列构成群组,各群组分别负责各自的扫瞄责任区以进行全天球的目标扫瞄侦测,并在侦测到可疑目标时集中辨识加强分辨率,或使用大口径的望远镜执行进一步的目标辨识作业。
例如假设舰体某面阵列有共10k*10k的侦测元件阵列,则可以切成100个1k*1k 扫瞄群分别对各自负责的空域实施扫瞄,但在某空域发现某目标时,立即集中此面所有元件对此目标实施高精度辨识,此时对此目标的识别能力等于一口气提升为分别扫瞄时的 100倍。当然,群组分配比例可以视需求决定。
另外若是以舰队为侦测基础,更可以划分各舰负责的责任区各自扫瞄以增加反应速度,或是在需要时令全舰队针对指定区域集中扫瞄来构成具有巨大口径的多舰组合侦测阵列以提升侦测距离与分辨率。而舰与舰之间会以资料链统合整理舰队的侦测情报资料。一但侦获可疑目标,舰队可以指定不同的两艘船同时追踪目标,以三角定位来精确计算目标距离。以上这些动作都可以完全自动化,不需任何人工的介入。
例如目前ESA构想中的达尔文(Darwin)计画便是使用六具直径1.5公尺的小型太空望远镜组成的红外线干涉阵列望远镜,其等效观测能力相当于口径50~500公尺(平均约为250m)的单一大型望远镜。若使用更多的望远镜组成阵列,侦测能力自然也就会越高。 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:45 PM
|
显示全部楼层
太空军舰的建造
巨大的太空战舰必然是在太空中建造。一般而言,其组件与制造材料均于太空生产。此外也有可能在地球上生产材料,再经由大型的质量投射器运到轨道上,但最终的组装一定是在太空中进行。而组装完毕的船舰就不会再回到星球表面上了。
太空船的建造,应该会直接在太空中进行,而不是在船坞里面建造。这是因为在无重力与高自动化的环境下,船坞是没有必要的。此外,太空船必然是以高度模块化的方式组装而成。
在确立太空船设计之后,首先将由运输船或拖船将预先打造好的零件运到指定组装区,这个区域可能是在太空殖民地、工厂或是轨道上的某个地带。然后由先遣人员操纵拖船组装龙骨与主要建造衍架,并配置一组发电机以及船舰的中央计算机,其中将有完整的太空船蓝图与建造流程。此外,运输船将会同时带来数十只或数百只机器工蚁,作为船舰建造工人。
这些工作完成后,接下来的工作便可交由前述的机器工蚁来负责完成细部组装与焊接调整的工作,所需能源则由安置好的发电机提供。这些机器工蚁将会沿著龙骨与建造衍架爬行,于预定的位置建立搭起需要的太空船框架,并将其它的组件放置固定到指定位置。加上引擎、燃料箱与发电机,接著挂上火炮等装备,最后建立乘员舱体。对于少数工蚁无法处理的较大的零件,则会以工蚁群的方式合作来拖曳组装。
而这些机器工蚁一般只能进行爬行的动作,大部分的运动将由六至八只的步足完成,就连从这个衍架移动到平行的另一根衍架,大部分情况下也可以用跳跃的方式达成。然而它们仍然可能携带有小型的外挂式喷射引擎与燃料包(可能直接使用压缩空气)以进行有限程度的空间机动,或是在跳跃「踩空」时飞回衍架上。但出力与燃料将不足以让它们直接搬运大质量货物进行飞行。因此另外还需要在周围太空中随时待命,将在龙骨周围漂浮的零件运送给工蚁让其负责安装的许多小型机动浮游拖船,这些拖船将拥有较大的引擎与燃料箱以及一些简单的机械臂,具有较大的推力,协助机械工蚁进行船舰的组装,也可以让工蚁搭乘移动,或是追上不小心跳太远的工蚁,将其带回。若将爬行的修复机器人称为工蚁,则这些飞行的运输机器人便可以称之为工蜂。
事实上,这些工蜂将被视为工蚁的外挂式航行模块。平时分离使用,各自作为修复与短距离运输的功能。工蜂上不会,也不需要装备工蚁的修复模块功能,仅拥有简单的捕捉、固定与牵引用机械臂,但将可在必要时,与工蚁一对一甚至一对多结合起来组成具备较大推力的飞行式机动修复平台。当然,这些工蜂也将使用自动化控制,并由中央计算机指挥。无论是工蜂或工蚁,都将在船舰建造完成后,配属成为该体的损管修复系统与短程运输系统的一部份。而如果发生弃船逃生的情况,由乘员舱做为主体构成的逃生舱在脱出时,将可能携带一部份的工蚁以紧急维修之用,另外也将会携带全部的工蜂当作逃生舱的外挂式推进引擎与燃料箱,以及必要时的短距离人员移动用搭乘器。穿著太空衣的人员可以搭乘工蜂进行移动与舰艇换乘作业。
此外,除了船舰需要装备外,运输舰最初也可能一并运来一个小型的机械工蚁/工蜂的维修平台/工厂,作为机械工蚁与工蜂故障或损耗时的维护之用。机械工蚁之间也应当有某种程度的故障侦测与互相修理的功能,若发现自己故障,将可呼叫「友蚁」来替自己修理,若发觉「友蚁」的损坏部分无法以自已携带的工具或流程修理,则会将其拖运至维修工厂处理。而这个小型维修工厂也将在船身建造时被一并整合在船体中,以供日后之使用。
更进一步地,此一维修平台/工厂也有可能本身就具有独力建造工蜂/工蚁的能力。其将可利用捡到的船体碎片、零件、铁陨石、乃至于拆解舰体某些装备来生产工蜂/工蚁以补充损失。当然这种工厂将有一定的大小,仅具有低量的生产能力,同时某些精密零件如CPU等需要拥有零件库存,因而使之只有在一定大小的船舰上方能装备,较小的船舰可能只有拥有部分修理能力的平台。但在各种船舰组成舰队后,大船将可以替小船提供较佳的工蚁/工蜂建造与维修服务。
简而言之,建造太空船所需的材料可能非常多,但需要的劳工将非常稀少。建造现场可能只有两到三人负责监控太空船的建造作业,主要建造任务将由机械工蚁与工蜂完成,而整个建造任务的指挥者将是该舰的中央计算机。因为这些机械劳工不会疲劳,负责监视的工程师的负担很轻,并且可以轮班替代,因此整个建造过程将会非常迅速。
同时,船舰的建造也不会有生产线限制的问题,只要把材料运到指定区域就可以开工。这时同时建造的船舰数量将仅取决于所能运到的材料与零件数量(机械工蚁与工蜂也算是太空船零件),因此只要材料足够,短时间内建立一支全新的太空舰队是有可能作的到的。当然,你可以建造大量的太空舰队,但要操作这些舰队也会需要大量燃料,因此限制舰队规模的主要原因将是太空船的燃料的生产与储存能力,而不是生产线的数量。 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:45 PM
|
显示全部楼层
不过,其实还存在一种电磁粒子防护罩的概念。即以极化(磁化)的粒子微粒喷洒在舰体周围形成一个烟幕防护罩,并由配置在舰体上的超导线圈产生磁场去牵引束缚这个磁性烟幕,使其能与船身大致做相对等速运动。如此一来可大幅减少粒子散逸的情况。当然,舰体的不规则运动、引擎与姿态控制喷嘴的高速喷流,甚至是敌我的兵器都会吹走一部份粒子,因而需要持续喷出粒子来补充以维持密度。但使用电磁粒子至少能够使用相对少的烟幕原料携带量来在舰体周围维持一定密度的粒子护幕,并持需一个较长的时间。
这类电磁粒子护罩视磁场强度而定,可能会厚达数十上百公尺之谱。它对于轨道炮或是飞弹等实体兵器是没有用处的,但却可以在一定程度下折射偏转或削弱敌方的光束武器,包含雷射炮与一般粒子炮在内。
然而,这种电磁粒子护罩同时也会干扰舰艇自身兵器的发射作业。事实上,它对己方的干扰将远大于对敌方的干扰。因为光束武器发射初期轨道只要产生微小的偏转,经过遥远的距离就会导致巨大的误差。而敌方打来的光束受护罩影响,在己舰附近不远处才发生偏转,造成的误差将会远小于前者。这点可以从其造成的光束偏折角、洒布厚度以等来进行计算,基本上其价值并不乐观。
在这种情况下,有可能需要控制磁场形状,将电磁粒子护罩扭曲成管型筒状包围著舰体周围,并在舰首主炮发射路径与舰尾的喷嘴路径上留下通道,或是于发射武器前后动态调整,以改善这种状况。但对于此类护盾本身防护效果低落的状况,则仍然没有有效的改善方式。
p>此外,电磁粒子护罩不能过于遮蔽光线的穿透,否则将干扰己舰对敌舰的侦测,甚至可能妨碍己舰对来袭的飞弹的侦测与拦截。但如果太过透明的话又会失去防护的效果。基本上这是个两难的问题,很难处理。但如果不将偏转敌舰一般光束武器当作主要考量,而只是以较稀薄的浓度来防护反物质粒子炮的话,仍会有一定程度的效果。反物质粒子团在穿越烟幕时有可能会与烟幕粒子产生不定程度对消灭从而降低威力,或是发生侧推偏转弹道的情况。因此电磁粒子护罩具有一定程度的价值存在。然而必须指出的是,这种价值仍然是非常有限的。
需要指出的,在船身周围建立的电磁场本身就拥有干扰乃至于偏转荷电粒子武器的效果,然而这种效果是很低的。这同样是因为以接近光速前进的粒子武器非常难以偏转,而能量的限制与磁场的厚度也将使偏转的角度极低,从时通过磁场的偏转效果受到很大限制,使其无法产生实质上的效果。
无论如何,以上的分析指出这类护盾的意义并不大。而从科学上的角度而言,可见的未来里显然不会有合理(至少要能通过前述的本质矛盾检验)而又能有效运作,并具有足够防护能力的护盾理论出现。至少可以确定的是,在可见的未来里的太空船舰上将不会有对抗武器系统的护盾系统存在。如果会有护盾出现,一定是以现在所难以想象的全新理论作为基础。然而,这种全新理论将有可能不只给太空船舰带来护盾,甚至可能会给船舰带来全新的设计乃至于战术、战略概念,彻底改变整个作战的概念,而不是只是单纯给船加上一层护盾这么简单而已。前述的重力波控制即为一例。
在至今为只的讨论中,所有的分析全都拥有理论基础。许多讨论的系统即使因为工艺或经济上的理由不存在实物(例如核融合引擎、星际冲压引擎这些),也都经过大量科学家做过严谨的理论性论证,并在许多期刊上公开发表其结果,受到众人的承认。唯有护盾系统是没有任何理论基础,甚至理论本身将会排斥这种系统的存在可能性。
若需要在SF小说中运用护盾系统的话,则需要从理论层面到实际层面进行完整与全面性的架构与运用设定,这需要极深的科学理论功力才能不会出现矛盾,并且合理的融入已知的技术架构中。
基于奥坎剃刀法则,这种从本质上没有任何理论支持而属于想象范畴(就算未来出现全新理论的话,该理论目前也仅存在于想象中)并且难以想象的东西,大家只要当它不存在即可。套具通俗的说法,即使太空战舰没有护盾,那也不是世界末日,对作战并不构成影响。就像现代的战车船舰无一拥有护盾,但仍然能运作的非常好。 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:44 PM
|
显示全部楼层
长筒型结构的太空船除了需在后方装设推进用的主引擎阵列以外,还必须要有能调整太空船指向的侧向引擎。这些侧向引擎将会以环形的配置放在船身的前后端。当需要改变船首指向时,则以两个环的反对称位置同时喷射来替船体提供一个角动量,并在抵达新指向前使用相对的引擎逆向喷射来停止转动。以下图为例,当此舰艇要往右转动舰首时,只要同时启动编号5与2的喷嘴即可,而要停止转动时,则可启动编号1与6的喷嘴来消除转动惯量。
<pre>
|1| |2|
/-----------------------------------------------|//
| |3| * * * * X * * * * |4| | ====
\-----------------------------------------------|\\
|5| |6|
==> 应力传递方向 ==> X <== 应力传递方向 <==
</pre>
需要注意的是,这种环形配置的喷嘴环离舰体转动轴心越远,则效率越高。但在大型舰艇上,由于具有很长的舰体,因此船首与船尾的喷嘴环动作时,舰体船壳与龙骨将承受相当的应力,从而有可能导致船体发生扭曲。这是由于动量在结构中传递应力所造成的。若以提升喷嘴环的推力来增加船身转动的速度,则应力就会相对增加。而消除或减低应力的方式,则是增加喷嘴环的配置,如上图中在转动质心X的固定距离标著*的地方,以两个一组对称配置的方式增加喷嘴环,并在转动船身指向时同时启动操作。如此便可有效减低船身所受应力,并增加转动速度。
六、武器系统配置
太空战舰的主要武器系统如粒子炮与磁道炮等,一般将会以成束捆绑或阵列布置的方式指向舰首,并以齐射的方式来涵盖敌舰可能的机动范围,以求能增加命中机率。这些主炮阵列虽是固定的,但炮口部分应该可以微调修改指向。所谓的微调,可能就是转动数公厘之类的。别小看这数公厘,炮口偏移一两公厘,光束打到一光秒以外可能就会出现数百公里的偏移量了。
除了主炮之外,舰体上应该会有数量众多的副炮。这些副炮将以能够旋转开火的炮塔的形式分布在艇壳上,并以体积较小与长度较短的雷射炮为主,主要用于进迫防卫的用途。需注意的是,此种炮塔不会像二战乃至于今日战舰的型态,反而会比较接近半圆形或浅曲面以减小RCS,也有可能采取升降式炮塔的方式以减少RCS(船大本厚就可以这样玩)。而一艘长达数千公尺乃至于十数公里的大型战舰,装备的副炮/炮塔数量可能会达到数十到上百门之谱。这些副炮的功能在于飞弹近迫拦截,接战范围大约在0.5至1光秒之间。
至于飞弹之类的武器使用,则是采取抛掷推离舰体再点火的冷射方式。由于太空中既无重力亦无阻力,太空战舰舰侧面以低压气体或弹簧侧向推出而尚未点火的飞弹,将会延推出方向持续远离军舰,但同时会拥有和军舰相同的前进轴线并与其并排前进,直到飞弹点火加速才会脱离军舰。因此军舰可以设定飞弹引擎点火的时间,在将飞弹全部推出后改变方向,等船舰远离惯性飞行的飞弹群之后再启动飞弹引擎。如此一来可以错开飞弹与军舰的前进轴,减少敌方侦知军舰的机会。
七、舰体装甲与防护设备
由于没有体积限制,太空战舰通常会有相当厚的装甲,但重量与密度应该会非常轻。主要原因在于太空战舰多半不会装备太厚的沈重金属装甲,而将以较轻的复合材质的多层装甲来组成。造成这种情况的原因主要是撞击/穿甲武器的原理限制。
在太空作战的环境中,面对拥有极高速度的动能武器,金属装甲的防御力并不会比其它材质(比如说,冰块)好多少。这是因为所谓的「固体音速」的限制的影响。固体音速即为声音在固体内传递的速度。而所谓的声音,事实上就是一种分子震动的传递现象,因此所谓的「固体音速」,就是在一个固体内的震动波传递速度,也就是固体内的应力波传递速度。
当弹头击中一块装甲时,如果弹头的速度超越此装甲固体音速,则由于弹头前进速度比装甲应力传递速度快,外层装甲将会来不及把弹头的冲击传递给内层分散承受。此时,弹头将会在前进时把装甲给「排挤」开来,这时固体装甲面对弹头所呈现出来的特性事实上接近于液体。也就是说,超越装甲的应力波传递速度的高速弹头撞击装甲时,装甲就像水(或者换个形容,象是奶油)一样,会被推向两侧而几乎没有防御效果。 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:43 PM
|
显示全部楼层
以上两个理由在未来也会成为太空军舰减少人力需求的重要因素。然而对于太空军舰而言,原因并不只有上面那两项而已。太空战舰上减少人员编制有更实质的意义。首先,在太空航行导论里曾经提到过,基于太空中无阻力与惯性定律,限制太空船航程的并非燃料的多寡,而单纯在于其上乘原员的生理限制(以及心理限制)。将人员编制减少,则所需的空气、食物与水,以及维生系统所需投入的能量也就越少。反过来讲,若给定需求物资数量,则人员越少,能够维持的时间也就越长,船舰续航力自然会随之增加。
其次,现代海战中若船舰损毁沈没,只要不是在攻击中当场死亡,人员仍能有相当高的生还的机会。至少用救生艇可以漂流个数天,在某些情况下也可以期待敌舰的救援。但太空环境非常恶劣,船舰若被击毁,即使进入逃生舱,一旦氧气用完也会完蛋。此外由于舰队相对速度极高,敌舰即使想要救援也通常是有心无力。最后基于惯性法则,被击毁的舰艇与其射出的逃生舱将会等速(通常就是最大战速)持续前进远离基地,能获得救援的机会将极为渺茫。因此人越少,则船舰被击毁时,人命的损失也就越低。
最后一点,人力减低也有助于船舰的生存性。众所皆知,海面上的军舰若被击中破损则会漏水,若无法堵漏则最终会沈没。太空战舰则没有漏水的问题,但是增加了一个空气泄漏的可能性。如果人员减少,则由于需要的气密人员舱间的减少,这种情况发生的机率将会减低。
比如以一艘百万吨级、两千公尺长的战舰为例,若将乘员减少到数十名甚至十名以内,则可以将这些人员的起居舱与驾驶舱高度集中,构成大小只有数十公尺等级的乘员模块(或统称乘员舱),对其施以集中气密处理,并给予高度的结构设计安全考量(例如将乘员舱置于船身内部或较不易遭击中之处)与额外装甲保护。这样一来便省去了全舰气密的需求,大幅减低了空气泄漏的机会,而乘员舱也可以获得较佳的保护。又,若要实作人造重力(旋转制造的离心力),转动集中的乘员舱的设计也比转动全舰更简单,所消耗的能量也更低。又,深埋舰体内部的乘员舱将可以提供乘员更佳的辐射保护,这使乘员可在近恒星区域遭遇太阳闪焰、远地空域的高辐射行星周围,以及人为高辐射环境(如近距离核爆)中有更高的生存性。
此外这亦可以节省船舰的结构重量,因既然不需要全舰气密,则气密维持结构所需重量就可以大幅降低。平时难以避免的空气泄漏与船舰所需要携带的空气量也可以减少。最后,在没有空气的船舰其它部分(即船只99%以上的空间),也就完全不会有发生火灾的可能性,因没空气自然烧不起来。
从以上的设定描述里面可以发现,类似钢弹影片里那种舰桥式的指挥塔是根本不会存在太空船上的。这类舰桥只是地球环境中为了获得更佳的视野(地球曲率的影响)的设计。在现代的军舰中,指挥官所在之处为战情中心(Combat Information Center,CIC),都是设计在船体内,由其它舷舱包覆而最不容易受损之处,舰桥只让航海官操舵之处。而太空军舰上乘员舱要获得外部影像很简单,即为侦测篇所提到的,直接透过光纤网络将船体外壳光感元件接收的影像即时投影在指挥舱屏幕上就可以了。甚至要把指挥舱做成全天周屏幕也不是问题,影像也可以在一旁做出矢量标示与注释,要进行任意区域定格放大等额外特殊处理也是可以的。
事实上,这种虚拟透视座舱的概念在目前也已经不是科幻小说了。例如目前美军便在测试在其新一代通用战机F-35的机身中装设数十部摄影机,将影像即时显示在座舱内各方向配置的屏幕上,达成「机体透视」的概念。但其主要目的并非用于作战,而是要让飞行员在航舰降落时有更佳的视野。因此在太空船上将不需要也不应该装上任何一块玻璃舷窗。在这种条件下,太空船上将不会有传统的舰桥存在,外型也将更为简单。
又,如果船舰损毁,乘员舱应该可以直接与船舰其它部分切离,此时乘员舱就摇身一变成为一个逃生舱,靠著内藏必需品、电池与维生装置可以维持一段时间。此外,可能还具有几具小型的引擎与燃料以供某种程度的航向转换。最后,乘员舱在与船身切离时,可以考虑抛弃其外的装甲模块以减轻重量,如此可以获得更高的航道转移速度。或者在某些特殊环境里,比如小行星带或碎片群集区里保留装甲以求较高的安全性。
而在这种设计下,乘员若要前往乘员舱以外的部位,就必须穿上太空衣。不过一般来说是不需要的。事实上,即使损管抢修也不需要由乘员亲自动手。而这就是目前尚未应用到军舰上,未来(甚至是不久以后的近未来)技术的最大特点:工作机器人的应用。大量应用工作机器人将可以大幅减低损管所需的乘员编制,并在同时赋予舰艇强大的自我修复能力。
结合以上的条件,太空船舰的乘员数将非常低,一艘大型主力战舰的乘员可能只有几十名,甚至在十名以内。当然如果是旗舰的话则要加上司令部与参谋人员,人数就会增加。
四、强大的损坏修复能力
需要注意的是,太空船舰所装备的修复用机器人,指的是比较低等级的,只具有部分智能,执行范围有限的工作,并且可以远端遥控的机器人,而不是完全独立运作的完全智能型机器人。其实不要说未来,即使以目前的技术水平为例,已经出现这种机器人了。如于特定恶劣环境下取代人类执行最危险任务的各种灾难救助、爆裂物拆除、灭火、紧急救援、监视与修复等机器人。这些机器人可经由遥控操作深入恶劣环境(如火场、高辐射或化学污染物质泄漏地带)或人类无法进入的环境(如蛇型机器人循管道与空隙爬进倒塌建筑中查找生存者)执行人类难以进行的工作。
在将来,同样的概念将被运用在所有太空人造建造物(不只军舰,商船与太空殖民地、浮游工厂也会有)中。这些机器人应该会是体积较小,以能轻易穿越管道或受损扭曲的船身结构体,具有多只(六或八只)拥有吸附功能的步足以能在无重力的狭窄复杂管道环境中快速爬行前进,并拥有装备各种焊枪、融切吹管、圆锯以及修复扳手、螺丝等各种工具的附肢,有较高的动力可背负或拖拉修补用资材。它们将集群作业,使用电池并且可以在需要时直接由舰艇中的能源管路的中继接口实施充电,或是使用一定长度的电线与插头(由机器人自己动手插然后拉线,参考星际大战中的R2D2)以从能源管路取得高耗能修复工具所需要的动力,并由中央计算机管制组队前往损伤区进行检修作业。一言以蔽之,就是一种机械工蚁的概念。
而这些机器工蚁可能内建各种基本的修复策略如挖掘、清除障碍、切断或连接管路、修补破洞、替换芯片或更换装设模块、指定模块重建、船体结构重塑等。而其修复工作的优先权排程、分派与管理则交由中央计算机来处理。在正常的状况下,人类工程师只需要监视舰体修复进度、负责调整分配各修复小组的负责区域,调整设定整体修复策略的优先权等级(如优先抢修特定区域或特定设备等),只在必要时介入直接遥控进行AI无法完成的复杂修复工作(当机器人AI发觉作业无法或不知如何完成时将自动回报)。如此一来将可以大幅提升修复效率,同时大幅减低损管所需的人手。这是机器人工学与AI发展的最大成果。
实际上,以上的场景并不是那么遥远的事。现代就有许多雏形系统出现,即前述所说的各种特殊场景应用的机器人。这一类机器人的普及将会在大约未来三十年之内就可以看到。
而这种类型高度自动化同时也会给舰艇带来高度防御力。因为太空船不会漏水,并且在前述的场景下也很难使之漏气,因此若被雷射或一般粒子炮击中发生穿透损坏,将会很难使之丧失战力,顶多使其损失一两根炮管或是几具飞弹发射器之类的。而且在数以百计甚至是数以千计的机器工蚁不眠不休的勤奋工作下,大部分损坏将可以很快修复,甚至是执行某种程度的舰体模块与结构的重建。这也就是武器篇里所提到的太空战舰难以摧毁的一个重要原因了。有了这一套自我修复机制,太空战舰即使没有很厚很强固的装甲,也必然拥有极高的损坏回复能力,而能持续执行战斗任务。
五、环形对称的动力系统系统配置
在太空航行导论中曾经提到,太空船的推进引擎主要装在后方,并且将会复数配置以减少故障或战损时丧失推力的情况。因此主引擎将会以圆形阵列放在中心,外面以炮管包围,或是反过来环状配置而绕著船身外围,并包围中心的炮管束的方式来配置。 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:41 PM
|
显示全部楼层
当然,太空船不一定是单纯的长筒构型,也有可能是几个同心长筒套叠而成的复杂长筒型,例如以内圈较长的炮管加上外圈的环型配置引擎(或是反过来,外圈炮管内圈引擎),这时炮管长度即等于船舰总长。唯一可以确定的是,太空船的长度将会远大于其宽度(或者说其直径)。这是由于粒子武器的加速轨远远大于其口径的关系。例如CERN那长27km的粒子加速器里,管道直径(含人员维修用走道)也不过只有数公尺之谱而已。
太空军舰设计成长筒型的另一个原因在于,尽量减小前进方向的横截面积将可以大幅减低自己遭命中的机率,同时如果要在前方装设装甲的话,减少装设装甲面积也等于减少重量,或是在装甲重量不变的情况下增加装甲的厚度。事实上,近代主力战车的设计就有这种用意在内-低矮的车身与较低的正面宽度(这同时也有利于铁路运输),并尽量增加正面装甲厚度。
在以上的考量下,太空船将会有巨大的长宽比。例如一艘长两千公尺的战舰,直径可能仅有数十至上百公尺,从侧面看将会极为细长。
三、舰船高度自动化
很明显的,太空军舰上的乘员人数将会非常少。其实不要说未来的太空战舰,就是现代的新一代船舰设计里,拜自动%B |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:40 PM
|
显示全部楼层
但是粒子炮或是磁道炮这些系统却没有这个问题,他们均属持续等加速型的系统,在炮弹通过炮管时持续提供一个固定加速度,没有膛压的问题。在粒子炮/磁道炮等系统里,同样可以在不变动炮管强度的前提下,以增加电流通量的方式提升投射炮弹的加速度。而在这种情况下,会因为管壁之间的斥力加强,产生类似于火炮的「膛压」问题,这时必须加强其结构强度来以防炮管破裂,此时也会增加系统的重量。然而这种提升电流通量来增加炮弹加速度的方式是非必须的,完全可以用增加炮管长度来取代,因为这类系统乃是基于安培右手定则的一个稳定加速系统,在电磁投射系统中,炮口初速和炮管长度直接成正比。炮管越长则加速时间越长,炮击威力、射程等也就越大,并且在此时系统总重与炮管长度也仅成正比增加,因此可以用很简单的结构来达到较高的炮口初速。而这一点是火药炮所办不到的。
在这种情况下,若想让粒子达到接近光速的速度,除了要有足够大的出力外,炮管也要有一定的长度才行。基于前述原因,在增加出力与增加炮管长度这两个变量调整里面,后者的技术层级远低于前者,较容易达到,成本也较低。现今的许多高能物理实验室里面的粒子加速器就是很好的证据,例如以首次制造出反氢闻名的欧洲粒子物理实验室(CERN),其所拥有的最大粒子加速器便长达二十七公里之谱(环形)。而这么大的武器,当然也只有大的船才装的下。
最后,使太空船舰加大的一个最重要的因素,则是太空船「能够」被建造到那么大。这是由于受到(或者说不受)建造与运用环境的影响。
首先,在地球或是其它星球上,由于有重力存在,因此各种载具有其大小上的极限。大型人造物体必须特别加强抵抗重力的结构与材质,并在支撑结构上投入额外的成本,而这种成本一般会随大小的立方比增长。此乃因体积为边长的力方之故。越大(特别是越高)的人造物,其底层受力就越大,支撑结构质量与空间所占的比例也就越高。因此人工建造物若作的太大,则若非载具的组成结构无法承受本身重量而自己压垮自己,否则就是出现超级昂贵的成本与价格效用比极端低落的情况。
其次,空中飞行的飞机所消耗的大部分能量是用来对抗重力使自己浮在空中,因此有严格的重量限制。这个原因使得飞机的重量远远低于水面舰船(体积就不一定了)。可是太空中没有重力,不需要耗能漂浮,这方面和地球上的水面舰是一样的。
此外,水面舰船的总体密度必须小于一,否则就无法浮在水上。然而太空军舰不可能「沈没」,顶多只会「爆散」,故此没有比重上限,在同重量的条件体型会比水面军舰紧致,而在同体积的条件下重量将远比水面舰艇高的多。
简单来讲,所有的原因都环绕在一个关键要素上:「重力」。就是因为太空中没有重力,所以才会有这种惊人的体型发展的环境。因此太空船在建造时,几乎不会有大小的上限,体积可以非常大。极端的来说,要做成星球等级的大小也并非不可能。例如星际大战里的死星就是典型的行星规模军舰/战斗站。当然,越大的船也就需要消耗越多的燃料。若燃料没有在船只放大时成比例增加,则结果就是速度与机动力的降低,变成只适合执行浮游炮台任务的战斗基地而非舰队作战任务的战舰了。
但是以上的情况同时也意味著一件事,专为太空环境建造的船舰将不可能直接降落在星球表面。星球联系船、强袭登陆舰之类需考虑重返大气与降落等问题的船只必须以不同的概念专门设计来适应重返大气与星球降落的问题。但这些船只也仅能适用于特定用途,战力将远比不上专为太空环境设计的军舰,故而亦将不会投入一般的太空舰队作战中。
二、长筒型的基本构型与细长的外观
在武器篇里曾提到,太空战舰的主炮将以粒子炮为主,炮管会集中在舰首。考量粒子炮长度(可能达舰身总长的 90%以上,甚至有可能达 100%),整艘船理所当然就会成为长型的结构。此外在太空航行导论里面也曾经提到,太空船引擎的配置必需对称于质心前进轴,否则会引起偏转运动。而这将会使船身在横截面呈圆形。结合以上两点,我们可以得知,太空船基本上将呈现长筒型的构型。 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:38 PM
|
显示全部楼层
转移轨道有无限多条,但消耗能量最低的只有一条,被称为「霍曼转移轨道」,乃是由霍曼首先计算出来。霍曼转移轨道是相切于两个出发点和目标轨道的椭圆轨道,并且是两个星球在「合点」的时候才会出现。行星间的重要关系位置有两种,其一称为「冲点」,亦即两个行星位于太阳的同侧,乃距离最近的地方。其二是两个行星分别位于太阳的反对侧,是二行星间距离最远的时候,这个位置关系称为「合点」。
基于星球运动与太空飞行原理,两个行星间航行消耗能量最低的是在距离最远的合点的时候,而非距离最近的冲点的时候,这是因为行星本身的运动速度与行星轨道上的恒星重力势能的影响。冲点虽然距离近,但由于飞行时必须先抵销行星的公转速度,因此消耗能量是最高的一种。
霍曼转移轨道飞行需要在行星相对位置达到合点的时候,但行星间并非天天都在合点,比如地球和火星的合与冲每两年两个月一次,所以我们说朝向火星的发射窗口开放周期为两年两个月一次。
霍曼转移轨道虽然是最节省能量的轨道(需要达到的速度最低),但并不是飞行时间最短的轨道。如果拥有足够强力的推进系统,则可以付出消耗更多的燃料为代价,走其它转移轨道更快的抵达目标,换句话说就是直接飞向目标。这种能力凭化学火箭是办不到的,必须要使用大推力与大功率的先进核分裂火箭(气态核)或是核融合推进系统才行。
一般而言,是否值得消耗燃料进行快速航行端视需求而定。比如说海运的货物和空运的乘客显然是基于不同的需求,付出不同的成本来选择不同的运输方式。再者,在这些转移轨道中,会有几条自由返回轨道。所谓自由返回轨道便是在飞行中途发生事故必须放弃飞行时,能够返回出发点行星的轨道,这必须谨慎选择轨道与出发速度才行。如失败的阿波罗十三号便是走自由返回轨道才能在中途放弃任务后返回地球。除了这些轨道转移动作的注意事项外,其它的航行原理就较为简单了。
太空船航行的运动原理乃是基于惯性定律。在一开始就提过,太空中没有阻力(其实是有,不过低到可以忽略),因此任何火箭想要煞车则必须消耗携带的燃料逆向喷射来减低速度,而前文提及的火箭公式中的最终速度则是指引擎全开到燃料消耗完毕所能达到的速度。因此前面的标准太空船的最高速度指的全都是太空船进行单程任务,无法回航甚至无法减速的速度。如果想要煞车,则最高速度必须减半。
简单的来说,加速一个物体到某个速度与在将其速度减为零消耗的能量是相同的,只不过方向相反而已。换句话说这是一个矢量的概念。当然就火箭系统而言,由于燃料的消耗让总质量降低,因而使加减速时消耗的能量并不相同,但实际上,以同样的燃料想要减速停止,则速度仍然会降低成单程最高速度的一半。而这种程加减速的情形仅会出现在朝向一个目标港口航行的情况下,若是想要在出发后能减速停止并返回母港,则根据同样的原理,速度将会掉成原先的单程最高速度的四分之一。而这个速度就是实际上的实用最高速度,同时也是实用巡航速度。
当然如果能出发到另一个港口补充燃料,则可以用两倍的燃料让实用最高速度达到单程最高速度的二分之一。如果想自行携带全程燃料达到相同的速度,需要携带多少燃料?各位读者不妨自己运用火箭公式计算一下。在此我们将不考虑这种情形,而以单程最高速度的四分之一当成实用最高与巡航速度。
在太空中是无所谓省不省油的,你加到某个速度后关掉引擎,则太空船仍然会依惯性等速前进,因此其理论航程是无限的。但由于成员需要的消耗品如空气食物水等需要补给,因此太空船仍有一巡航时间,不考虑加速时间的话,这个时间乘上实用巡航速度便是该太空船的实用行动半径。简单来说,这跟核子动力船只与有 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:36 PM
|
显示全部楼层
需要建立与维护成本,后者也可能需要燃料成本,但大量运用下来采用此类推进方式系统在价格上会极具竞争力。即使是需要燃料的光束发射站,若使用相同数量的燃料,其能使太空船增加的速度会高于火箭推进系统所能增加的速度。而这类系统的缺点是其太空船的推力方向会受到限制,且在远距离时运作效率会低落,比如要在冥王星周边运作(不是飞向冥王星)效率会降低,其飞行方向垂直于光束时甚至没有作用,且太空船会有一固定的航道而较难作机动。
聚光式光压系统的另一个延伸概念,是光帆航线与光帆船团。用大量太阳能光板聚光可以产生一条航线。并不瞄准某艘太空船,而只是对准一个方向造成一条光道。任何有装帆的太空船只要进入这条光道便可以获得动力。此种概念将会产生出光帆航线与光帆船团。太空船在进入光帆航线内可以获得光压动力,离开后则使用自备的火箭引擎推进。这也是一个节省燃料的方法。
第三种推进形式的另外一个概念便是磁压推进系统。它和光压系统相当类似,不过利用的是太阳的磁场。太阳会放出太阳风,这是一种流动的电浆,电子与质子气体,其速度约为每秒五百公里。因此若用超导体线圈造出一个环状的电磁场帆便可以让太空船乘著太阳风飞行。
磁帆的组装与操作皆较为简单,只要把圆圈型超导电缆通上电流,它就会受磁力而自动膨胀成完美的圆形。打开电流开关则磁帆便可乘太阳风风推进,不想推进时只要关掉开关即可,不像光帆还需要收帆或改变角度。不过磁帆需要使用大量高温超导体,而这目前仍在研究。磁帆本身的性能也只有一些理论上的探讨。基本上磁帆在接近太阳的地区如近地行星带中效率较好,可能会比光帆好些,端视高温超导体的发展而定,在远地行星则效率降低。再者前面使用微波光束照射的网格状太阳帆若是部份采用高温超导体制造,则同时亦可有磁力推进的效果存在。
卷一 太空航行导论 第六节 三种推进形式系统的比较
关于各式推进系统的简单介绍到此为止,接下来则来探讨各种推进系统的可能运作情况。就第一类推进系统而言,化学火箭仍会是短时间内主要动力源之一,即使核能火箭开始运作,初期仍是要靠化学火箭来作地球表面至绕地轨道间的举升运载。但就行星间太空航行而言,化学火箭十分不经济,因此将会很快的被更佳的系统取代。
核分裂电推力火箭技术难度与受控核融合火箭相比并不高,同时此类核电动力系统已累积大量的运转经验,因此有可能在短中期内成为主流,而核分裂的热推力火箭目前则是卡在环保问题以及政治问题上。实际上若是没有政治因素的影响,这类系统现今应该已经发展成熟并大量运用中。但既然已经拖延到现在,则可能会还没正式上台便结束其生涯。因先进的核分裂热推力系统之概念(气态核心炉)与核融合系统相当类似,同时核融合系统的能量效率又远较其为高,而构造简单的核融合脉冲推进系统又是可以立即上马,又没有核分裂系统的污染及辐射屏蔽问题,因而完全可以轻易击败核分裂热推力系统。再加上核分裂系统所用的燃料铀与钸等价格又较贵(藏量较少之故),因此很有可能会直接跳过核分裂热动力系统直接使用核融合脉冲推进系统。
至于受控核融合推进系统则由于受控核融合尚未发展完成,同时即使发展完成,想成熟到能够装备至太空船上仍须一段时间,因此中期仍然应以核融合脉冲推进系统为主。不过长期下来,受控核融合系统仍然会成为主流,这是因为其比冲值较高的缘故。再者受控核融合的发展同时还有提供太空飞行以外一般能源的目的。
核融合脉冲喷射则是为了太空飞行而发展的方法,并不适合用于作为供应一般能源的发电使用。目前受控核融合虽然也有以雷射爆缩的惯性拘束研究, |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:40 PM
|
显示全部楼层
卷二 太空战斗导论 第四章 太空军舰的设计与制造篇
太空军舰设计
由于操作环境与技术环境的不同,在太空中运用的军舰,和过去曾经出现与目前存在的船舰、飞机,或是其它的系统,将会有极为巨大的差异。能在太空操作军舰进行战斗的年代,必然会有相应的技术,从而使其具有不同的面貌。虽然其中会有许多技术是目前难以想象的,但是大多数则可以从目前技术与理论推导出来。总而言之,必须先有一个认知:太空战舰很难以现有的系统去类比。
以下是几个太空舰艇的特性:
一、巨大的体积与长度
首先必须提到,太空军舰有个特性,就是它会非常庞大,远比人类使用过的任何船舰大的多了。造成太空战舰的巨大化的直接原因有三个,首先是太空船舰必须携带大量的燃料。例如使用核融合引擎的太空船必须携带数以千吨计的大量氢与氦三,而这些都是需要巨大储存体积的燃料。其次,和过去海军主力战舰倾向于大型化的理由相同,为了追求更高的防御力与攻击力,太空船也会随之大型化。最后一个原因同时也是必要条件,也就是太空船「能够被作的那么大」。
第一个原因在「太空航行导论」里面便已经可以看出来的了。由于火箭公式的限制,为了达到足够的速度,巨大的燃料携带量无可避免,因此太空船的体积与质量很难缩小。即使是单人乘员的小型突击舰或舰载机,也可能会有上百公尺的长度与数千上万吨的重量。装备大量重型武器与厚重装甲的战舰更可能长达数公里至十数公里,质量可能达到数百上千万吨之谱。
其次,在之前的侦测与通讯篇曾提到,在太空中人造物体极难匿踪,太空战舰必定会在很远的地方就被侦测到,而且必然是直接的光学目视侦测。因为太空中没有地球曲率或地表地形,甚至是云雾之类的东西可以遮蔽,因此敌我双方在很远的距离就可以互相目视。
在这里必须注意一点。所谓的「视距外作战」在太空的环境下基本上是不存在的。在地球上的环境里,对于舰艇而言,40km以外的距离就是视距,因为这个之外的目标由于地平线的遮蔽因此是无法直接目视的。对于高飞的战斗机而言,视距的定义就变的有些模糊,一般是30km以内的距离,这是肉眼的极限。当然藉助于一些适当的仪器,例如F-14的电视影像加强系统、Su-27的前视红外线系统等,可以将这个距离略微延伸。例如F-14依靠其电视影像系统,可以辨识大约60~70km以外轰炸机等级的大型目标。而美国目前正在发展,由747改造的大型雷射飞弹拦截机ABL-1,更将有400km的直接攻击距离,其使用雷射雷达与光学望远镜,可以轻易侦测数百至上千公里的目标并且以电子光学仪器加以目视,再时用雷射炮实施攻击。
在侦察篇曾提到,太空中,船舰目标侦测的主要手段便是各类电子光学系统,再加上强力望远镜的支持,将可以轻易看到数百上千光秒外的目标。虽然这里的「视距」不是只靠肉眼就能达到的,但结果是一样的:太空船能够看的距离远比能够打的距离远的多。甚至常常会在看到目标后,还得飞行一两周的时间才进入双方的主炮交火距离内。这也就是说,伏击战在太空中几乎是不可能发生的,双方只有硬碰硬的对决。事实上,这相当类似大洋上的水面舰队高速海战的情况。而在这种情况下,拥有射程越长的武器,能够先射击的一方会越占优势,因此主炮会越来越长,这也自然导致船舰越来越大了。要以过去经验来类比的话,也只有20 世纪初期的战斗舰发展的情况可以比拟。
若从武器系统构成的观点来看,目前的火药炮是所谓的瞬间高加速型投掷系统,以火药一瞬间然烧产生的膨胀气体推力推动炮弹。此类系统中单纯加长炮管并不会增加炮弹的速度与威力(以质量弹论),必须增加推进火药量,增加膛压的方式以提升炮弹的炮口初速,这使除增加炮管长度外还得增加管壁厚度,造成火炮质量会随炮口速度的增加而指数上升。因此火药炮能提供的速度有其极限,同时火药炮武器也有其大小限制。 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:39 PM
|
显示全部楼层
就第二个情况的运输航线骚扰阻绝与防御而言,主要也是会发生在恒星系内,各行星间的转移轨道上。恒星系间的运输可能性并不大,或者说未知性太高,同时甚至可能根本没有必要。因为至目前为止依据对恒星的光谱分析研究得出的结论是构成所有恒星系的基本物质是相同的。远方恒星系中有的原料在自己的恒星系中一定也有。而在智能生命把自己恒星系资源消耗完毕之前,会先发展出回收再生,原子重组或甚至质能互换的技术。
第一项不用提了,第二第三项除了大家熟悉的核能是由质量转换成能量之外,还有比较少人听过的各个高能物理研究中心都在用高能加速器产生新粒子,其就是在进行将能量转换成质量的步骤。就原子重组方面,或许在将来微机械(Micro Machine) 技术成熟后会有更高的可行性与更低的成本。星舰企业号的电传系统,即将人转换成电波传送再予以复原的技术只要稍微更改一下便是很有用的点石成金术。只要把以资料形式传送的电波的内容动点手脚,就可以把出发时的石头的原子排列方式改变成在目的地形成黄金的原子排列方式(或是其它任何物质)。这些技术将会使恒星系间运输无法与之竞争。
当然,行星际太空运输由于成本较低或是技术不够先进时仍然会有重要的地位。而行星系间运输的干扰则很简单,用舰队去攻击航在线的商船与运输舰。这是唯一的方法,目前的布雷等技术是无效的。原因很简单,因为太空不是大海。宇宙是开放的,任何物体在太空中都无所遁形。当然一些低反光的陨石难以侦测,但机雷等人工物体由于需要侦测设备等因而会放出热源,虽然这个热源会比一般舰艇小,但是还是会比陨石易于侦测。另外一个原因是运输舰,特别是高速运输舰本身的陨石防护装置。
和地球上大不相同的是地球上的商船即使碰到微小异物也不会有什么损失,但宇宙中即使是小如小指的陨石,由于运动速度都是每秒数十公里以上,无装甲的运输舰只要受到撞击必定会造成损失。虽然爆炸是不至于,不过货物的损失,燃料的外泄之类的都免不了。体积越大的运输舰受到撞击的机会越大,因此船公司为了省钱,必然要有对陨石的应对策略。由于商船当然不会装上装甲来浪费酬载,因此为了避免撞击微小陨石造成损失,一般都应该会选择装上固定的雷射雷达与小型的雷射炮塔用来蒸发或是推开前方航在线的小型陨石,并以运动来回避较大的陨石。特别是要进出小型星带外围的浮游工厂与拉格朗日重力平衡点等陨石群集之地的舰艇。
而这些避碰装备也可以轻易侦测到航在线的机雷并予以扫除或避开,因此一般的机雷是无用的。包装式的沈睡飞弹机雷由于体积大,需要装引擎与燃料因而价格昂贵无法大量部属,且在易于被侦测这点上与一般机雷是相同的,甚至因为需要具有侦测系统和动力的因素,可能更容易被侦测。因而也更不可能出现。
机雷另一个不能产生效用的原因是太空的广大。一条航线的宽度可以有数千公里到数万公里,而且还是三度空间的航线,故即使是用便宜机雷,也很难达到足够的密度。当然最太空船节省燃料的航线精确度较高,但这狭小的地带正是在舰首陨石侦测雷达的侦测范围内。因此想要阻碍运输还是得用军舰才行。只要一两艘小型军舰,其防护力与火力便不是民间商船的防陨石雷射炮塔所可以打发掉的。因而商船必须要绕道(意味著浪费燃料与增加成本),或者要求军舰护航(也是浪费军舰燃料与成本,外加分散战力)。
基于以上的因素,骚扰战术是一定会被执行的,护航任务当然也会。不过需要注意的是由于骚扰方通常必须回到母港,而护航一方一般可在目的地加油,因而即使两者用的是同等级的军舰,护航方的战斗速度与机动力将是骚扰方的两倍。不过这仅是战斗速度,骚扰方的优势则是由于其拥有主动权,其选择接战时速度将是其最高战斗速度。而根据太空船的航行原理,通常这也就是最高巡航速度。但护航方则由于必须跟随商船,因此最初接战瞬间,护航舰艇的速度将只是商船等级的最高巡航速度。由于商船以经济考量来设计,故这个速度不会很高。因此护航军舰必须有一段加速的时间,这使其在刚接战时较为吃亏,且可能成为第一击的目标。但护航军舰的较高加速度将可以使其在与本队商船相比时,具有很大的优势,能够有更多的机率残存下来。
基本上,对骚扰方而言,这可以是一个主要的作战,但对于被骚扰的护航一方而言,若是长期被动的被骚扰下去,会处于一个相当不利的地步。因而就护航方而言护航作为只是一个次要的战场,主要的精神将会用在政治解决或是发动另一个大规模攻势的军事解决方案上。 |
|
|
|
|
|
|
|

楼主 |
发表于 28-12-2008 09:39 PM
|
显示全部楼层
卷二 太空战斗导论 第一章 背景环境篇
很多人都看过以太空为背景的各式科幻电影与动画,其中不乏大量的战斗场景。小型快速的战斗机或是机器人,巨型战舰,航空母舰,固定甚至是机动惑星要塞之类的双方或多方在近距离互射武器,你来我往,屏幕上各类死光交叉纵横。但有多少人曾经想过在这些场景之中哪里些是必然的,哪里些是在技术进步之后有可能发生的,而又有哪里些是毫无道理的呢?笔者本著HardSF的精神,在此开个半空想科学教室,为大家探讨一下太空战争中一些具有较大可能性的情况。
首先来讨论的是太空中可能会发生战斗的各种地点与情况。要讨论这个之前,首先必须了解何谓战争。战争者,对于有限资源的暴力争夺者也。所谓的有限指的是战争双方中,至少是其中的一方认为某项资源是有限的,其价值值得以暴力去争取者。因此甚至可能仅是某方或是双方主观认为的有限而非实际上的有限。另外政治资源也算是资源之一,为此而爆发战争也是有可能发生的。
对于资源的争夺,一般有两条途径,其一是由己方来控制某项资源,其二是阻止敌方控制它。第一条途径会表现在对于资源产地的直接争夺上,第二条途径则是表现在对于资源运输流通管道的阻碍与维护之上。需注意的是,这两者在相当的程度上是可以互相诠释的。依照这个理念,战斗由于据点的争夺与交通的遮断与维持这两个目的而发生。前者不用说,行星或是太空中人造建筑据点,甚至是某个恒星系本身的争夺战。从区域太空优势到轨道轰炸与强袭登陆,甚至是直接摧毁行星或太空站之类的毁灭性手段,各种情形都可能发生。至于后者,则就是运输航线的遮断骚扰等通商破坏战与船团护航任务等情形了。
就第一个情况而言,战斗首先会发生在行星周边,浮游要塞或是恒星系周边航道上。这里所谓的周边很容易让大家有种狭隘的感觉,但要了解宇宙空间是很广大的。即使是行星外围,指的也是数光秒到数十光秒的距离。但是就恒星系外围而言,战场空间并不会随比例而放大。规模大到恒星系间战斗的时候,也只是在对于恒星系来说外围薄的几乎会让人忘了他的存在的一层空间上发生。
就相对上而言,恒星系周边战场空间与行星周边战场空间不成比例,但就绝对范围而言,前者则会比后者大上数十倍。实际上恒星系周边空域的战斗不太可能,或者说要很久以后才有可能发生。这是基于距离与太空船速度的因素,在行星系周边的战斗上,想要取得内线优势已经相当吃力了。对于恒星系周边空间而言即使是光速前进的太空船也不太能有效防御这么大的范围,而侦测距离也很难在短期内能够支持到此种距离。
慢著,我听到有人提到WARP了?很有趣的是这是一个矛盾因素,先不提WARP理论上与技术上的困难好了,虽然它可以让守方很快的赶到战场,但相对的,它也可以让攻方直接跳过守方在恒星系外围的防御圈,直接进入恒星系内部攻击目标。这会导致战斗也不会爆发在恒星系外层。换句话说,WARP其实是一种对于攻方能够产生的优势远大于对于守方能够产生的优势的一种技术。
以星际大战中的战斗机也能进行超空间跳跃的技术水平来分析,在这种技术已经成立的环境下是不可能有大规模中央集权的政府的,帝国也好,较强结构的宇宙联邦也好(帝国之前的同盟其实就是抄自美国的联邦体系),这种体系将会面临各种分离主义者,各地的游击武力与恐怖份子的巨大威胁。这些小型武装部队可以轻易的攻击中央集权政府的各个要害。因为在具有超空间跳跃能力的小型机之前,外围防线有跟没有是完全一样的。
极端的说来,星际大战中,反抗军其实可以直接把X战机中队跳跃至帝国首都行星或是各个重要据点行星附近对其进行一击脱离战术。而想要防护这种攻击,就必须在每个行星配置大量战斗机中队,轨道与地面防空系统等。而其花费将是游击武力的数千倍到数万倍。因为游击武力没有固定基地可以被攻击,故他们只要有一个中队的战机,帝国就必须在其所有的星系都至少配置两三个中队的战斗机来对抗,且这些战斗机还要维持完全警戒状态。很明显的这是不可能的,因而也不会有帝国或是联邦等政体存在,顶多是邦联等松散结合的政治结构或者说是集体安全结构。换句话说WARP技术的影响力将不仅止于战术层面,而会高达战略层面,甚至是整个恒星系或是宇宙文明的深层结构层面。基本上在没有WARP的世界,战斗将主要发生在行星或是恒星系周边就是了。 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|