查看: 1226|回复: 5
|
One to One
[复制链接]
|
|
如果题目要求证明y = 1 / x^2 (R --> R) 并不是One to One, 请问如何表达呢? |
|
|
|
|
|
|
|
发表于 23-10-2007 07:15 PM
|
显示全部楼层
一个 Function f:[a,b]->R is one to one
<==>
f(x) = f(y) ==> x = y , for all x,y in [a,b]
如何证明 f:R\{0}->R ,f(x) = 1/x^2 不是 one to one ?
那我们就要证明 f(x) = f(y) 不能 implies x = y
从 f(x) = f(y) => 1/x^2 = 1/y^2 , x,y =/= 0
=> 1/x^2 - 1/y^2 = 0
=> (y^2 - x^2)/(xy)^2 = 0
=> (y-x)(y+x) = 0
=> x=y OR x=-y
结论出来了得到的是 f(x) = f(y) ==> x=y or x=-y , 所以不可能是 one to one
不然再容易一点就是给一个 example ,show 不只一个 value of x satisfy
f(x) = a
example : f(1) = 1 , f(-1) = 1 所以它不是 one to one |
|
|
|
|
|
|
|

楼主 |
发表于 23-10-2007 09:48 PM
|
显示全部楼层
原帖由 dunwan2tellu 于 23-10-2007 07:15 PM 发表 
一个 Function f:[a,b]->R is one to one
f(x) = f(y) ==> x = y , for all x,y in [a,b]
如何证明 f:R\{0}->R ,f(x) = 1/x^2 不是 one to one ?
那我们就要证明 f(x) = f(y) 不能 implies x = y ...
太感谢您了! |
|
|
|
|
|
|
|

楼主 |
发表于 24-10-2007 10:33 AM
|
显示全部楼层
如果是f(x) = x / (x^2 + 1 ) 呢?我算到x = y OR x = 1 / y,但从graph看来,它是one to one.... |
|
|
|
|
|
|
|
发表于 24-10-2007 12:02 PM
|
显示全部楼层
原帖由 lavendar_o5 于 24-10-2007 10:33 AM 发表 
如果是f(x) = x / (x^2 + 1 ) 呢?我算到x = y OR x = 1 / y,但从graph看来,它是one to one....
f(1/2) = (1/2)/(1/4+1) = 2/5
f(2) = 2/5
=> f(1/2) = f(2)
所以它不是 one to one .
要从 graph 看的话,就画 horizontal line ,看他是不是每次都只经过一个点。如果是的话他就是 one to one ,否则的话就不是 |
|
|
|
|
|
|
|

楼主 |
发表于 24-10-2007 06:21 PM
|
显示全部楼层
原帖由 dunwan2tellu 于 24-10-2007 12:02 PM 发表 
f(1/2) = (1/2)/(1/4+1) = 2/5
f(2) = 2/5
=> f(1/2) = f(2)
所以它不是 one to one .
要从 graph 看的话,就画 horizontal line ,看他是不是每次都只经过一个点。如果是的话他就是 one to one ...
谢谢您 ! |
|
|
|
|
|
|
| |
本周最热论坛帖子
|